
CSEIT1831221 | Received : 02 Feb 2018 | Accepted : 13 Feb 2018 | January-February-2018 [(3) 1 : 1052-1055]

International Journal of Scientific Research in Computer Science, Engineering and Information Technology

© 2018 IJSRCSEIT | Volume 3 | Issue 1 | ISSN : 2456-3307

1052

-1

An Overview of Combinatorial Optimization Techniques
Dr. S. Dhanalakshmi

Professor, Department of Computer Science and Engineering, Malla Reddy Engineering College (A),

Secunderabad, Telangana, India

ABSTRACT

This paper presents the overview of greedy technique, dynamic programming technique and branch & bound

technique. Knapsack problem is one of the applications of that technique. This discussion is centered overview

of capacity of the objects and then the objective is to obtain a filling of the knapsack that maximizes the total

profit earned without exceeding the capacity of the knapsack. After solving, the problems with maximum profit

then find the time complexity of greedy, dynamic programming and branch & bound d techniques

Keywords: 0/1 or fractional knapsack, Capacity, G reedy, Dynamic Programming and Branch & Bound

I. INTRODUCTION

Knapsack Problem

Knapsack problem is a problem in combinatorial

optimization; given a set of items, each with a weight

and a value, we have to pack the knapsack with

maximum value in such a manner that the total

weight of the items should not be greater than the

capacity of the knapsack. The knapsack problem can

be categorized into 0/1 knapsack problem or binary

knapsack problem (in 0/1 each item may be taken 1

or not 0) and fractional knapsack problem (bounded

knapsack problem and unbounded knapsack

problem). Dynamic Programming and Branch &

Bound algorithm can works with 0/1 knapsack

problem and greedy algorithms does not work

with 0/1 knapsack problem, it work with

fractional knapsack problem.

II. RELATED WORK

Overview of Greedy, Dynamic Programming and

Branch & Bound : Dynamic Programming technique

are bottom up approach, each step depends on the

solution to sub problems, then use the solutions of

those sub problems to make an optimal choice, it’s

based on 0/1 knapsack problem; Greedy Technique

are top down approach, to make an optimal choice

(without knowing solutions to sub problems) and

then solve remaining sub problems, it’s based on

fractional knapsack problem; but both techniques are

used for optimization techniques, and both build

solutions from a weight and profit of individual

elements but does not exceed the maximum capacity

for satisfying the constraints. Branch and Bound

algorithms refers to all state space search methods in

which all children of the expanded node (E-node)

are generated before any other live node. This

algorithm consists of a systematic enumeration of

candidate solutions, discarding large subsets of

fruitless candidates by using upper and lower

estimated bounds of quantity being optimized.

III. GREEDY ALGORITHMS

Greedy algorithm is a general design or most straight

forward design technique; it’s used for optimization

problems. Simply choose best option at each step,

steps for achieving greedy algorithms are feasible,

local optimal choice and irrevocable/unalterable. It is

based on two types of paradigms, one for subset and

Volume 3, Issue 1, January-February-2018 | www.ijsrcseit.com | UGC Approved Journal [Journal No : 64718]

 1053

another for ordering paradigm. Subset paradigms are

0/1 knapsack problem, minimum cost spanning trees,

job sequencing with deadlines and ordering

paradigms are single source shortest path problems,

these are the applications of greedy algorithms.

Fractional Knapsack Problem in Greedy Solution

Fractional knapsack problem, we can break the items

for maximizing the total value of knapsack. The

items can be break into three lemmas, this problem is

called fractional knapsack problem. Assume

knapsack holds weight W and items have Value Vi

and Weight Wi; Rank the items by Value/Weight

ratio, considering the items in order of decreasing

ratio. It is based on three lemma. In Lemma 1 - the

items are arranged by their values/profits. Here the

items with maximum value is selected first and

process continue with minimum value, Lemma 2 -

The items are arranged by their weights, light

weights is selected first and process continue with

maximum weight and Lemma 3 - the items are

arranged by certain ratio of profit/weights, here

selection proceeds from maximum ratio to minimum

ratio and then the objects are arranged in non

decreasing order of Pi/Wi.

Algorithm:

Greedy knapsack (m,n)

// Profits & Weights of P[1…n] and W[1…n]

// P[i] / W[i]>= P[i+1] /W[i+1]

// m is the knapsack size

{

For i= 1 to n do x[i] = 0.0

U=m

For j = 1 to n do

{ if(w[i]>U) then break

X[i] = 1.0; U=U-w[i]

} if(i<=n) then x[i] = U/w[i]

}

Example: n=3, P= (25, 24, 15), W= (18, 15, 10) and

m=20

Lemma A B C Weight Profit

(Wi) (Pi)

Maximu

m Profit
25 2/15 0 18+2=20

25+(24/

15*2)=2

8.2

Minimu

m

Weight

0
10/1

5
10 10+10=20

15+(2

4/15*1

0)=31

Profit/W

eight
0 24 5/10 15+5=20

24+(15/

10*5)=3

1.5

In Lemma 1, object 1 has the largest profit value, so it

is placed in to the knapsack first, then X1 has a profit

of 25 is earned, weight of 18 and two units of

knapsack capacity are left, so the maximum profit is

28.2. Similarly, in lemma, 2 are minimum weight the

capacity is 31; finally the lemma 3 are profit by

weight and the Maximum Profit for the knapsack

problem in greedy method is 31.5.

Fractional Knapsack has time complexity O (N log N)

where N is the number of items.

IV. DYNAMIC PROGRAMMING

Dynamic Programming is also called dynamic

optimization; it is a method for solving a complex

problem into simpler sub problems. The next time the

same sub problem occurs, instead of recomputing its

solution, one simply looks up the previously computed

solution.

There are three basic elements that characterize a

dynamic programming algorithm;

 Substructure – decompose the given problem

into smaller sub problems;

 Table structure – after solving the sub problems,

store the answers to the sub problems in a table

 Bottom-up construction – using table, combine

solutions of smaller sub problems to solve larger sub

problems, and eventually arrive at a solution to the

complete problem.

Steps:

1. S0 = {(0,0)} then we compute Si+1 from Si by

computing i=0,1,2,---,n

2. S1i = {(P,W) / P-Pi+1, W-wi+1) £ Si }

3. Now Si+1 can be computed by merging the

pairs in Si and S1i together

Volume 3, Issue 1, January-February-2018 | www.ijsrcseit.com | UGC Approved Journal [Journal No : 64718]

 1054

4. Note that the Si+1 contains two pairs (Pj,Wj)

and (Pk,Wk) with the property that Pj ≤ Pk and Wj ≥

Wk, then the pair (Pj,Wj) can be discarded.

5. A discarded or purging rule is called

dominance rules. In purging rules basically the pair

with less profit and more weights.

Algorithm:

Dynamic knapsack (p,w,n,m)

{

S0 ={(0,0)};

for i=1 to n-1 do

{

Si-1= {(P, W) | (P-pi, W-wi) £ Si-1 and W ≤m};

Si = Merge Purge (Si-1,S1i-1);

}

(PX, WX) = last pair in Sn-1;

(PY, WY) = (P1 + pn, W1+wn) where W1 is the largest

W in

Any pair in Sn-1 such that W + wn ≤ m;

If (PX>PY) then xn=0;

Else xn=1;

}

Example:

Consider the knapsack instance m=6,

(w1,w2,w3)=(2,3,4) and (p1,p2,p3)=(1,2,5)

S0 = {(0,0)}

S10= {(1,2)}

Si+1 by merging the pairs of Si and S1i

S1 = {(0,0),(1,2)}

S21={(2,3),(3,5)}

S2 = merge S1 and S21 = {(0,0),(1,2), (2,3),(3,5)}

(Pj,Wj) and (Pk,Wk) with the property that Pj ≤ Pk and

Wj ≥ Wk, then the pair (Pj,Wj) can be discarded, (3,5)

is discarded according to purging rules or dominance

rules.

 S12 = {(5,4),(6,6),(7,7),(8,9)}

S3= S2 and S12 = {(0,0),(1,2), (2,3), (5,4),(6,6),(7,7),(8,9)}

Now we have a pair of (6,6)=(P,W)

X = {0,0,0} , so X3 as 1={0,0,1}

We select next object (P-P3) and (W-W3)

 ie.,(6-5) (6-4) = (1,2) so X1 as 1={1,0,1}

We select next object (P-P1) and (W-W1)

 ie.,(1-1) (2-2) = (0,0)

Total Profit earned =

P1X1 + P2X2 + P3X3 = 1.1 + 2.0 + 5.1 = 6

Total Weight earned =

 W1X1 + W2X2 + W3X3 = 2.1 + 3.0 + 4.1 = 6

The objects 1 and 3 are selected based on the

knapsack instance. They give maximum profits and

same weights not exceed 6.

V. BRANCH AND BOUND

Branch & Bound is general algorithm or Systematic

method for finding optimal solution of various

optimization problems, especially in discrete and

combinatorial optimization. The B&B strategy is very

similar to backtracking in that a state space tree is

used to solve a problem. B&B refers to all state space

search methods in which all children of the “E-node”

are generated before any other “live node” can

become the “E-node”. Live node is a node that has

been generated but whose children have not yet

been generated. E-node is a live node whose children

are currently being explored. Dead node is a

generated node that is not to be expanded or

explored any further. All children of a dead node

have already been expanded. Both BFS & D-search

(DFS) generalized to B&B strategies. BFS like state

space search will be called FIFO (First in First Out)

search, as the list of live nodes is “First-in-first-out”

list or queue. D-search (DFS) like state space search

will be called LIFO (Last in First Out) search as the

list of live nodes is a “last-in-first-out” list (or stack).

Algorithm:

UBound (cp,cw,k,m)

// cp, cw, k and m have the weight and profit of the

ith object

{

b=cp;

c=cw;

{

If(c+w[i]≤m) then

{

c=c+w[i];

b=b-p[i];

} }

Volume 3, Issue 1, January-February-2018 | www.ijsrcseit.com | UGC Approved Journal [Journal No : 64718]

 1055

return b;

}

Example:

Consider the knapsack instance n=4,

(p1,p2,p3,p4)=(10,10,12,18), w1,w2,w3,w4)=(2,4,6,9)

and m=15.

The object x1=1,x2=1,x3=0 and x4=1 are selected

weight of the objects are x1=2,x2=4,x3=0 and x4=9

Total weights are 2+4+0+9= 15 selected

X = (1101)

VI. CONCLUSION

In this paper, we have presented the overview of

different combinatorial optimization techniques of

greedy method, backtracking algorithms and branch

& bound algorithm. Its depends on the capacity of

knapsack and size of the population, it can be useful

for analysis of genetic algorithm approach, In

proposed method, to implement some of the more

advanced approximation schemes and compare with

their performance of genetic algorithm paradigms.

VII. REFERENCES

[1]. S. P. Sajjan, Ravi kumar Roogi, Vijay kumar

Badiger, Sharanu Amaragatti,”A New Approach

to Solve Knapsack Problem”, An International

Research Journal of Computer Science and

Technology, ISSN:0974-6471 OnlineISSN:

2320-8481,Vol7,Issue2,

{http://www.computerscijournal.org/vol7no2/a

-new-approach-to-solve-knapsack-

problem/pdf/vol7no2/vol7no2_219-222.pdf}

[2]. Veenu Yadav1, Ms.Shikha Singh, Vijay kumar

Badiger, Sharanu Amaragatti,” A Review Paper

on Solving 0-1 knapsack Problem with Genetic

Algorithms”,International Journal of Computer

Science and Information Technologies, Vol. 7

Issue 2, 2016, PP 830-832 ISSN : 0975-9646. {

http://ijcsit.com/docs/Volume%207/vol7issue2/

ijcsit2016070286.pdf}

[3]. Ameen Shaheen, Azzam Sleit, “Comparing

between different approaches to solve the 0/1

Knapsack problem”, IJCSNS International

Journal of Computer Science and Network

Security, ISSN:1738–7906,Vol.16 No.7,July

2016,PP1-10, {

http://paper.ijcsns.org/07_book/201607/201607

01.pdf}

[4]. Shafiqul Abidin, “Greedy Approach for

Optimizing 0-1 Knapsack Problem”,

Communications on Applied Electronic, Vol 7

IssueNo.6, September 2017, ISSN : 2394-

4714,PP1-3,

{http://www.caeaccess.org/archives/volume7/n

umber6/abidin-2017-cae-652675.pdf}

[5]. Salem Hildebrandt & Christopher Hanson, “0-1

Knapsack Optimization with Branch-and-

Bound Algorithm”,

{http://www.micsymposium.org/mics2016/Pap

ers/MICS_2016_paper_42.pdf}

