
CSEIT1831295  | Received: 30 Jan 2017 | Accepted: 06 Feb 2017 | January-February-2017 [(2)1: 301-306] 

International Journal of Scientific Research in Computer Science, Engineering and Information Technology 

© 2017 IJSRCSEIT | Volume 2 | Issue 1 | ISSN : 2456-3307 

 

301 

An Analytical Review : Static Load Balancing Algorithms 
Navjot Jyoti 

Assistant Professor, Department of Computer Science & Engineering, Northwest Group of Institutions, 

Dhudike, Moga, Punjab, India 
 

 

ABSTRACT 
 

Load balancing is the process of improving the performance of a parallel and distributed system by distributing 

load among different available processors. In literature we have multiple load balancing algorithms divided into 

two broad categories i.e. Static Load Balancing and Dynamic Load Balancing. This paper presents analytical 

review of three static load balancing algorithms and present the performance analysis of three static load 

balancing algorithms using execution time and waiting time as a benchmarks. Performance statistics of this 

behaviour evaluated by designing the simulator program in C++. On this simulator we have smaller number of 

jobs and larger number of job for different number  of heterogeneous processors  to get the execution time and 

waiting time. 

Keywords : Round Robin, Randomized, Central Manager, Heterogeneous, Load Sharing, Load Balancing 

 

I. INTRODUCTION 

 
In parallel and distributed systems more than one 

processors processing parallel programs. The amount 

of processing time needed to execute all processes 

assigned to a processor is called workload of a 

processor. A distributed system provide the resource 

sharing as one of its major advantages, which provide 

the better performance and reliability than any other 

traditional system in the same conditions. One of the 

research issues in parallel and distributed systems is 

the development of effective techniques for 

distributing workload on multiple processors. The 

main goal is to distribute the jobs among processors 

to maximize throughput, maintain stability, resource 

utilization and should be fault tolerant in nature [1]. 

Some of the major benefits of parallel computing 

systems are information sharing among distributed 

users, resource sharing, better price/performance 

ratio, shorter response time, higher throughput, 

higher reliability, extensibility and incremental 

growth [5]. 

Load sharing policies may be either static or adaptive.  

Static policies  use  only  information  about  the  

average  behaviour  of  the system;  transfer  

decisions  are  independent  of  the  actual  current 

system  state.  Static  policies  may  be  either  

deterministic  (e.g., “transfer  all  compilations  

originating  at  node  A  to  server  B”)  or 

probabilistic  (e.g.,  “transfer  half  of  the  

compilations  originating  at node  A  to  server  B,  

and  process  the  other  half  locally”). Numerous 

static load sharing policies have been proposed. 

Adaptive  policies,  by  contrast,  are  more  complex,  

since  they  employ information  on  the  current  

system  state  in  making  transfer  decisions. This  

information  makes  possible  significantly  greater  

performance benefits  than  can  be  achieved  under  

static  policies [6]. 

 

Load balancing is a technique applied in parallel 

system that is used to reach optimal system condition, 

which is workloads are evenly distributed amongst 

computers, and as its implication will decrease 



Volume 2, Issue 1, January-February-2017  | www.ijsrcseit.com | UGC Approved Journal [ Journal No : 64718 ] 

 

 

 302 

programs execution time. One type of load balancing 

algorithm that may be used is static load balancing 

algorithm. This algorithm performs load balancing 

tasks before programs execution begin [1]. 

 

In static load balancing method the performance of 

the processors is determined at the beginning of 

execution. Then depending upon their performance 

the work load is distributed in the start by the master 

processor. 

 

II. LOAD BALANCING STRATEGIES 

 

a) Round Robin Static Load Balancing Algorithm: 

This algorithm distributes jobs evenly to all slave 

processors. All jobs are assigned to slave 

processors based on Round Robin order, meaning 

that processor choosing is performed in series and 

will be back to the first processor if the last 

processor has been reached. Processors choosing 

are performed locally on each processor, 

independent of allocations of other processors [1]. 

As shown below Figure 1.  

 

Round Robin is undoubtedly the most widely 

used algorithm. It's easy to implement and easy to 

understand. Here's how it works. Let's say you 

have 2 servers waiting for requests behind your 

load balancer. Once the first request arrives, the 

load balancer will forward that request to the 1st 

server. When the 2nd request arrives (presumably 

from a different client), that request will then be 

forwarded to the 2nd server. Because the 2nd 

server is the last in this cluster, the next request 

(i.e., the 3rd) will be forwarded back to the 1st 

server, the 4th request back to the 2nd server, and 

so on, in a cyclical fashion.  

 
Unfortunately, a load balancer running on a round 

robin algorithm won't be able to treat the two servers 

accordingly. In spite of the two servers' 

disproportionate capacities, the load balancer will 

still distribute requests equally. As a result, Server 2 

can get overloaded faster and probably even go down. 

You wouldn't want that to happen. 

b) Randomized Static Load Balancing Algorithm: 

This algorithm uses random numbers to choose 

slave processors [7]. The slave processors are 

chosen randomly following random numbers 

generated based on statistic distribution [1], as 

shown below figure 2. 

c) Central Manager Static Load Balancing 

Algorithm: In this algorithm, in each step, central 

processor will choose a slave processor to be 

assigned a job. The chosen slave processor is the 

processor having the least load. Load is calculated 

here  

CPULoad = (No. Jobs in a queue/Total no. of jobs) * 

processor speed 

 

The central processor is able to gather all slave 

processors load information, thereof the choosing 

based on this algorithm are possible to be performed 

[1]. As shown below in figure 3. 

 

III. DESIGN OF SIMULATOR 

 

In this simulator, we are providing some information 

to calculate the required results. 

a) information of jobs 

We are assuming a parallel program with small 

number (100) jobs and a parallel program with larger 

number (400) of jobs and assuming the information 

about each job i.e. average number of instructions 

and average CPI(Clock per Instruction) of each job.  

b) Information about CPUs. 



Volume 2, Issue 1, January-February-2017  | www.ijsrcseit.com | UGC Approved Journal [ Journal No : 64718 ] 

 

 

 303 

Also we are assuming different number of CPUs in 

this system and their speed in Hz. We are 

considering 5, 10, 15 and 20 heterogeneous CPUs.  

c) Parameters used  

We will calculate the execution time and waiting 

time for each job and then for a whole program. To 

calculate these parameters we need to find some 

intermediate results which are used to find final 

values. 

To calculate the job execution time we need CPI and 

Number of instruction in job.  

Job exe_time = Numberinstructions * InstructionExe_Time + 

Timeqdelay 

Where InstructionExe_time is the time taken by single 

instruction to execute, Numberinstructions average 

number of instruction in a job and Timeqdelay is the 

time spent in waiting queue.  

To calculate instruction execution time we need to 

know CPI and time taken by clock tick.  

InstructionExe_time = Timeclock_tick * CPI 

To calculate the time taken by clock tick we use 

following equation.  

Timeclock_tick = 1/ Speedcpu 

This simulator will run on the load balancing 

computer (Master) and it will choose the CPU (Slaves) 

to assign the job. We are assuming we have a parallel 

program divided into number of job. Master will take 

a bunch of jobs in a parallel program and assign one 

by one to different CPUs according to a specific 

criteria. We have all jobs in hand to distribute, means 

no job is coming after starting the process of load 

balancing. 

 

There may be executing other processes on the CPU 

then some processes have to wait, so there maximum 

jobs in the queue will be 20. When we have 

instruction execution time of each job then job total 

execution time can be calculated.  Then it’s easy to 

find the total execution time of the parallel program. 

To calculate the waiting time of each job in the 

program we need to know the waiting time and 

execution time of the preceding job. 

To simplify analysis of simulation results, some 

assumptions are made to limit the simulated system. 

Following are the assumptions.  

 

1. All jobs are static in nature i.e. no jobs are 

coming after starting the process of scheduling. 

2. Computers used in parallel system are 

heterogeneous in nature. 

3. The compared Static load balancing algorithms 

are Round Robin, Randomized, and Central 

Manager. 

4. The load index used in Central Manager is CPU 

Load. 

5. The algorithm comparison is performed based on 

two simulation results types, i.e. execution time 

and Waiting Time.  

6. The simulated parallel system is a heterogeneous 

with total CPUs of 5, 10, 15, 20.  

7. CPUs have taken with different speeds of 500, 

1000, 1500 and 2000 in MHertz for 

heterogeneous.  

8. Maximum Queue length at each CPU can be 20. 

9. The jobs in the simulated parallel system are 

independent, and the simulated parallelism is on 

job or process level. 

10. Other all factors are considered as constant like 

memory access time, input output access time, 

communication delay etc. 

IV. SIMULATION PARAMETERS 

 

In the simulator that will be run, there are three 

main components computer, program, and static load 

balancing algorithm. The three components have 

some parameters that their values should be set. The 

value for the simulation parameters is determined 

based on some assumptions. The parameters with 

their value are summarized in Tables below: 

TABLE 1 

Computer Parameters 

 Number of CPUs Description  

No_cpu 

5,10,15,20 The amount 

of CPUs that 

is used in 



Volume 2, Issue 1, January-February-2017  | www.ijsrcseit.com | UGC Approved Journal [ Journal No : 64718 ] 

 

 

 304 

parallel 

system. 

speed_cpu 

500,1000,1500,2000, 

2500 for 

heterogeneous in 

MHz 

Processing 

unit clock 

speed. 

cpi 

5 The average 

of clock per 

instruction 

TABLE 2 

Program Parameters  

 No. of jobs Description 

no_jobs 
100, 400 Total number of jobs 

in a program 

no_ins 
500 Mean total 

instruction in a job 

TABLE 3 

Algorithm type factor 

 Type of cpu Description 

round_robin For 

heterogeneous   

Round robin 

algorithm 

randomized  For 

heterogeneous 

Randomized 

algorithm 

central_manager For 

heterogeneous 

Central 

manager 

algorithm 

that uses 

CPU load as 

a load index. 

end_q Queue 

length 

TABLE 4 

Amount of computer factor 

Level 1 5 5 CPUs are 

used 

Level 2 10 10 CPUs are 

used 

Level 3 15 15 CPUs are 

used 

Level 4 20 20 CPUs are 

used 

 

There are two things that will be measured from 

simulation result; they are execution time and total 

waiting time of jobs in a parallel program. To obtain 

these, running simulation and then the simulation 

result in form of execution time and waiting time are 

calculated. Simulation runs based on two factors 

combinations: they are algorithm and amount of 

computers. The algorithm factor has 3 levels, three 

algorithms on heterogeneous CPUs, while amount of 

computers factor has 4 levels i.e. 5, 10, 15 and 20 

CPUs as given in Table 5. In order to indicate 

variations, then repetition is applied to the 

simulation experiment. 

 

V. EXPERIMENTAL SETUP AND 

PERFORMANCE MEASUREMENTS 

 

To get the measurements, this simulator run on the 

machine and provides the information about the jobs 

as we have given above factors. We run different 

number of jobs by providing different number of 

CPUs to the simulator. 

 

Experiment 1. We run 100(smaller number of) jobs 

on the heterogeneous CPUs. It gives the values given 

in table 5. Here execution time and waiting 

calculated in the simulator as discussed above 

method. Here we use notations as RR represents 

Round Robin, CM represents Central Manger and 

RD represents Randomized, similarly ET and WT as 

Execution time and Waiting Time respectively. We 

can observe that if we have heterogeneous CPUs, 

then Central manager gives best results among these 

three methods. If we increasing the number of CPUs, 

then Round Robin reducing the execution time faster 

than others. The values given in table 5. 

TABLE 5 

Jobs      CPUs 5  10  15 20 

10

0 

R

R 

ET 
2625.0

00 

1375.0

00 

962.50

0 

750.0

00 

WT 
2375.0

00 

1125.0

00 

712.50

0 

500.0

00 

CM ET 2625.0 1375.0 962.50 750.0



Volume 2, Issue 1, January-February-2017  | www.ijsrcseit.com | UGC Approved Journal [ Journal No : 64718 ] 

 

 

 305 

00 00 0 00 

W

T 

2375.0

00 

1125.0

00 

712.50

0 

500.0

0 

RD 

ET 
2705.5

00 

1455.0

00 

1062.5

00 

792.5

00 

W

T 

2457.5

00 

1205.0

01 

812.50

0 

542.5

00 

 

Graphical representation of this result as follows. 

Graph 1 

 

 
Graph 2 

 
Experiment 2. Then we run 400 (larger number of) 

jobs on same kind of situations as we had for 100 jobs. 

If we have heterogeneous type of CPUs then we can 

see that Central Manager gives better results than 

randomized and round robin. The values are given in 

table 6. 

TABLE 6 

40

0 

R

R 

ET 
40500.

004 

20500.

002 

13837.

500 

10500.

000 

WT 
39500.

004 

19500.

002 

12837.

501 

9500.0

00 

CM 

E

T 

40500.

004 

20500.

002 

13837.

500 

10500.

000 

W

T 

39500.

004 

19500.

502 

12837.

500 

9500.0

00 

RD 

E

T 

40597.

504 

20777.

502 

14482.

501 

10612.

501 

W

T 

39597.

504 

19777.

502 

13482.

501 

9612.5

01 

 

Graphical representations of these results as follows. 

Graph 3 

 
Graph 4 

 

0

500

1000

1500

2000

2500

3000

5 10 15 20

E
x
ec

u
ti

o
n

 T
im

e(
m

s)
 

Number of CPUs 

Execution Time for 

Heterogeneous CPUs for 100 

jobs 

RR

CM

RD

0

500

1000

1500

2000

2500

5 10 15 20

W
a

it
in

g
 T

im
e(

m
s)

 

Number of CPUs 

Waiting Time for Heterogeneous 

CPUs for 100 jobs 

RR

CM

RD

0

5000

10000

15000

20000

25000

30000

35000

40000

5 10 15 20

Ex
e

cu
ti

o
n

 t
im

e
(m

s)
 

Number of CPUs 

Execution Time for 

Heterogeneous CPUs for 400 

jobs 

RR

CM

RD

0

10000

20000

30000

40000

5 10 15 20

W
ai

ti
n

g 
ti

m
e

(m
s)

 

Number of CPUs 

Waiting Time for Heterogeneous 

CPUs for 400 jobs 

RR

CM

RD



Volume 2, Issue 1, January-February-2017  | www.ijsrcseit.com | UGC Approved Journal [ Journal No : 64718 ] 

 

 

 306 

VI. INTERPRETATIONS OF RESULTS 

 

These results have been taken for two parameters i.e. 

execution time and waiting time. As it can be seen 

from the graphs that central manger gives the best 

results among these three algorithms. It can observe 

that as number of CPUs increases, round robin gives 

the better results from randomized algorithms. On 

the other hand all algorithms behave very similar for 

waiting time as these were for execution time. One 

thing here to note that randomized algorithm might 

be good as comparison to Round robin, at some 

situations because of random number generated, but 

in average case round robin is better that randomized. 

 

VII. CONCLUSION 

 

According to my parameters of simulation I 

concluded that Central Manager Algorithm is best 

algorithm among these three algorithms and gives 

best results among others because it distributes the 

load fairly i.e. each time when it has to assign a job to 

a CPU, it chooses the CPU which has minimum load 

at that moment. On the other hand Round Robin 

Algorithm distribute the load evenly, it don’t 

consider any kind of load of any CPU. It just divided 

the load evenly among all CPUs. And if we talk 

about Randomized Algorithm then its performance 

totally depends upon the random numbers generated, 

overall its performance is very similar to Round 

Robin Algorithm. 

 

VIII. REFERENCES 

 
[1]. Sharma S., Singh S., and Sharma M. , 

Performance Analysis of  Load Balancing 

Algorithms, Proceedings of World Academy of 

Science, Engineering, and Technology, 28, 269-

272, 2008. 

[2]. S. Malik, “Dynamic Load Balancing  in a 

Network of Workstation”,  95.515 Research 

Report, 19 November, 2000. 

[3]. Shirazi B. A., Hurson A. R., and Kavi K. M., 

Scheduling and Load Balancing in Parallel and 

Distributed Systems, IEEE Computer Society 

Press, California 1995. 

[4]. Derek L. Eager, Edward D. Lazowska , John 

Zahorjan, “Adaptive load sharing in 

homogeneous distributed systems”, IEEE 

Transactions on Software Engineering, v.12 n.5, 

p.662-675, May 1986. 

[5]. Amit Chhabra, Gurvinder Singh, Sandeep Singh 

Waraich, Bhavneet Sidhu, and Gaurav Kumar, 

Qualitative Parametric Comparison of Load 

Balancing Algorithms in Parallel and Distributed 

Computing Environment, Proceedings of World 

Academy of Science, Engineering, and 

Technology, 2006. 

[6]. Derek L. Eager, Edward D. Lazowska and John 

Zahorjan, “A Comparison of Receiver-Initiated 

and Sender-Initiated Adaptive Load Sharing”. 

ACM  0-89791-169-5/85/007/0001,1985. 

[7]. Motwani, R. and Raghavan, “Randomized 

Algorithms”, ACM Computing Surveys, 28, 33-

37, 1996 


