
CSEIT18314 | Received : 01 Jan 2018 | Accepted : 09 Jan 2018 | January-February-2018 [(3) 1 : 31-38]

International Journal of Scientific Research in Computer Science, Engineering and Information Technology

© 2018 IJSRCSEIT | Volume 3 | Issue 1 | ISSN : 2456-3307

31

Web Real-Time Communication by Controlling Congestion
D. Prakash Rao

*1
, Dr. G. S.Bapi Raju

2

*1
M.Tech, CSE, Gokaraju Rangaraju Institute of Engineering and Technology, Hyderabad, Telangana, India

2
Professor, CSE, Gokaraju Rangaraju Institute of Engineering and Technology, Hyderabad, Telangana, India

ABSTRACT

WebRTC has rapidly turned out to be famous as a video conferencing stage, halfway because of the way that

numerous programs support it. WebRTC uses the Google Congestion Control (GCC) calculation to give clog

control to ongoing correspondences over UDP. The execution amid a WebRTC call might be affected by a few

variables, including the fundamental WebRTC usage, the gadget and system qualities, and the system topology. In

this paper, we play out an intensive execution assessment of WebRTC both in copied manufactured system

conditions and in genuine wired and remote systems. The assessment demonstrates that WebRTC streams have a

marginally higher need than TCP streams while rivaling cross activity. When all is said in done, while in a few of

the considered situations WebRTC Performed obviously, we watched essential situations where there is opportunity

to get better. These incorporate the remote area and the recently included help for the video codec's VP9 and H.264

that does not execute of course.

 Keywords: WebRTC, Congestion Control, Performance Evaluation.

I. INTRODUCTION

WebRTC gives Real-Time Communication (RTC)

capacities by means of program to-program

correspondence for sound (voice calling), video talk,

and information (_le sharing). It enables programs to

discuss specifically with each other in a peer-to-peer

fashion, which contrasts from regular program to web-

server correspondence. One of the fundamental points

of interest of WebRTC is that it is coordinated in most

present day web programs and keeps running without

the need to introduce outside modules or applications.

The World Wide Web Consortium (W3C) [4] has set

up an Application Programming Interface (API), which

enables designers to effortlessly actualize WebRTC

utilizing JavaScript, while the Internet Engineering

Task Force (IETF) [14] characterizes the WebRTC

conventions and basic organizations.

To understand the low dormancy and high throughput

fundamental IFIP WG 7.3 Performance 2017. Nov.

1416, 2017, New York, NY USA Copyright is held by

creator/owner(s). For constant correspondence,

WebRTC organizes transmit-ting information utilizing

UDP rather than TCP. WebRTC over TCP is utilized if

all else fails, when all UDP ports are blocked, which

can be the situation in intensely secured undertaking

net-works. Since UDP does not bolster any type of

blockage control, WebRTC utilizes a hand crafted clog

control calculation that adjusts to changing system

conditions. With the abnormal state API, WebRTC

makes it simple for application engineers to build up

their own particular video spilling applications. The

impediment of this abnormal state approach is that the

execution points of interest, particularly the way

conges-tion is dealt with, are totally avoided

application designers. In the meantime, late research

assessing the execution of WebRTC has just somewhat

tended to this hole (see Section 7 for more subtle

elements). In this paper, we investigate the execution of

WebRTC, chiefly concentrating on the Google

Congestion Control (GCC) calculation, which is the

most broadly utilized blockage control calculation for

WebRTC. We assess its execution utilizing the most

recent web programs over an extensive variety of

utilization cases. The key commitments comprise of

concentrate the impacts of various engineered arrange

conditions on the most recent usage of WebRTC,

looking at WebRTC's execution on cell phones,

dissecting the execution of the recently included video

Volume 3, Issue 1, January-February-2018 | www.ijsrcseit.com | UGC Approved Journal [Journal No : 64718]

 32

codec's VP9 and H.264, and assessing the effect of

wired and remote systems on WebRTC. The source

code for replicating the test conditions depicted in this

paper is accessible at:

https://gitnode.com/Wimnet/webrtc_performance

specifically, my trial examine incorporates the

accompanying:

Benchmark Experiments: I examine the impacts of

shifting dormancy, parcel misfortune, and accessible

data transfer capacity by imitating diverse execution

situations utilizing Dummy net. We set up benchmarks

for the execution of WebRTC in various situations.

Cross Traffic: I consider the impacts of TCP cross

activity and various WebRTC streams having a similar

bottleneck. The assessments demonstrate that with the

re-penny improvements to the clog control system,

WebRTC streams get marginally higher need while

contending with TCP streams.

Multi-Party Topology: We analyze the execution of a

work and Selective Forwarding Unit (SFU) based

topologies for gather video calls utilizing WebRTC.

The assessment features inborn exchange o s amongst

execution and sending extra foundation for multi-party

video calls.

Video Codec's: We contemplate the execution of three

generally utilized video codec's, VP8, VP9, and H.264,

on WebRTC. My investigations exhibit that the

recently included H.264 and VP9 codec's don't execute

not surprisingly within the sight of clog or bundle

misfortunes.

Versatile Performance: We assess the execution of

WebRTC on cell phones and exhibit the effect of

restricted computational limit available to come back to

work quality.

Genuine Wireless Networks: We tentatively assess

video approaches WebRTC in genuine systems,

particularly concentrating on remote systems. My trials

demonstrate that WebRTC can experience the ill

effects of poor execution over remote because of burst

misfortunes and parcel retrains-missions. We recognize

key regions for development and brie y take a gander at

cross-layer approaches for enhancing video quality.

Here Performance assessment and plan of clog control

calculations for live video spilling have gotten

consider-capable consideration. Underneath, we feature

the most important work.

Blockage control for sight and sound: TCP

variations, for example, Tahoe and Reno [16] have

appeared to prompt poor execution for mixed media

applications since they depend just on misfortunes for

clog sign. The ways to deal with address the

deficiencies of these strategies can be separated in two

classifications.

The main assortment of blockage control calculations

utilizes variations of postponement to deduce clog.

Postpone based variations of TCP, for example, Vegas

[5], and FAST [24] depend on measuring round trek

delays yet they are more receptive than proactive in

clog control. LEDBAT [22] depends on measuring one

way parcel postponements to guarantee high

throughput while limiting deferrals. Grow [25] uses

stochastic conjectures of cell arrange execution to

accomplish similar objectives. The second

classification of blockage control depends on Active

Queue Management (AQM) systems. Nothing [27]

utilizes Explicit Congestion Notifications (ECN) and

misfortune rate to get an exact gauge of misfortunes for

clog control.

WebRTC clog control: SCReAM [17] is a cross breed

misfortune and postpone based blockage control

calculation for conversational video over LTE. FBRA

[19] proposes a FEC-based clog control calculation that

tests for the accessible transmission capacity through

FEC bundles. On account of misfortunes because of

blockage, the excess bundles help in recouping the lost

parcels.

WebRTC execution assessment: Several papers have

examined the execution of WebRTC. Most related

work concentrates on a solitary part of the convention

or utilize obsolete adaptations of WebRTC in their

execution investigations. [2] Analyzes the Janus

WebRTC portal concentrating on its execution and

versatility just for sound conferencing in multi-party

calls. [8] Focuses on examination of end-to-end and

AQM-based clog control calculations. [7] Evaluates the

execution of WebRTC over IEEE 802.11 and proposes

methods for gathering bundles together to keep away

from GCC's activity on bursty misfortunes.

Volume 3, Issue 1, January-February-2018 | www.ijsrcseit.com | UGC Approved Journal [Journal No : 64718]

 33

[10] Presents the plan of the latest variant of the GCC

calculation utilized as a part of the WebRTC stack.

While [10] expert vides preparatory examination of

GCC in some engineered organize conditions, it doesn't

concentrate on WebRTC's execution on cell phones or

genuine wired and remote systems. Its primary

concentrate is on between convention reasonableness

between various RTP streams and RTP streams

contending with TCP takes after.

[23] gives an imitating based execution assessment of

WebRTC. Be that as it may, all aws identi ed in [23]

have been in this way tended to in WebRTC. For

example, the information rate never again drops at high

latencies (however rather reacts to inertness variety),

the data transmission sharing amongst TCP and RTP is

more attractive because of the recently presented

dynamic limit, and the accessible transfer speed is

shared all the more similarly while contending RTP

ows are included.

A more sensible execution ponder utilizing genuine

system e ects is done in [13], where the execution of

WebRTC is measured with portable clients in di erent

territories. Despite the fact that the WebRTC execution

utilized is obsolete, the paper proposes that WebRTC's

over-dependence on bundle misfortune signals prompts

under-usage of the channel because of portability.

System Architecture

Figure 1. WebRTC's media processing pipeline.

II. IMPLEMENTATION

WebRTC utilizes the Google Congestion Control

(GCC) calculation [15], which progressively modifies

the information rate of the video streams when clog is

identified. In this area, they give a short outline of

GCC. More points of interest can be found in [10].

WebRTC normally utilizes UDP (unless all UDP

ports are obstructed), over which it utilizes the Real-

time Trans-port Protocol (RTP) to send media

bundles. It gets criticism bundles from the collector

as RTP Control Protocol (RTCP) reports. GCC

controls blockage in two ways: delay-based control at

the less than desirable end and misfortune based

control at the sender side.

Receiver-side controller

The collector side controller is delay-based and thinks

about the timestamps of the got outlines with the time

moments of the edges' age. The collector side controller

comprises of three unique subsystems: (I) entry time

modify, (ii) over-utilize indicator, and (iii) rate

controller. These distinctive subsystems of the collector

side controller are appeared on the correct side of

Figure 1. The entry time adjust (Section evaluates the

progressions in lining deferral to identify clog. The

over-utilize identifier recognizes the clog by looking at

the assessed lining postpone changes from the entry

time adjust with a versatile edge. The rate controller

settles on the choices to build, diminishing, or hold the

evaluated accessible rate at the recipient, Ar, in light of

the blockage assessed got from the over-utilize locator.

Ar(i) for the ith video outline is given as takes after:

Where = 1:05, = 0:85, and R(i) is the measured

received rate for the last 500 ms. The received rate can

never exceed 1:5R(i):

Ar(i) = min(Ar(i); 1:5R(i))

Figure 2. Diagram illustrating how sender and receiver

determine and exchange their available rate.

Volume 3, Issue 1, January-February-2018 | www.ijsrcseit.com | UGC Approved Journal [Journal No : 64718]

 34

Arrival-time filter

The entry time channel constantly measures the time

moments at which parcels are gotten. It utilizes the

season of entries to ascertain the between landing time

between two back to back bundles: ti ti 1, and the

between flight time between the transmission of similar

parcels: Ti Ti 1. It at that point computes the restricted

postpone variety di, characterized as the contrast

between entry time and between flight time as takes

after:

 di = (ti ti 1) (Ti Ti 1)

This postpone demonstrates the relative increment or

diminishing concerning the past parcel. The restricted

defer variety is bigger than 0 if the between landing

time is bigger than the between takeoff time. The entry

time changes evaluates the restricted lining defer

variety mi. The computation of mi depends on the

deliberate di and past state gauge mi 1, whose weights

are powerfully balanced by a Kalman adjust to decrease

commotion in estimation. For example, the weight for

the present estimation di is measured more vigorously

than the past gauge mi 1 when the blunder difference is

low. For more subtle elements, see [15].

Over-use detector

The assessed one-way lining defer variety (mi) is

contrasted with a limit. Over-utilize is recognized, if

the gauge is bigger than this limit. The over-utilize

indicator does not flag this to the rate controller, unless

over-utilize is identified for a predetermined timeframe.

The over-utilize time is as of now set to 100ms [10].

Under-utilize is distinguished when the gauge is littler

than the negative estimation of this limit and works in a

comparative way. An ordinary flag is activated when

mi.

The estimation of the limit largy affects the general

execution of the GCC blockage calculation. A static

edge can undoubtedly bring about starvation within the

sight of simultaneous TCP streams, as appeared in [11].

Thusly, a dynamic limit was executed as takes after:
γ
i=

γ
i-1 + (ti - ti - 1) *Ki * (|mi

γ
i -1)

The value of the gain, Ki, depends on whether jmij is

larger or smaller than i 1:

 Ki =

Where Kd < Ku. This makes the limit increment when

the evaluated mi isn't in the scope of [I 1; I 1] and

diminish when it falls in that range. This helps

expanding the limit when, e.g., a simultaneous TCP

takes after enters the bottleneck and keeps away from

starvation of the WebRTC streams. As per [11], this

versatile limit brings about 33% better information

rates and 16% lower RTTs when there is contending

activity having a similar bottleneck.

Rate controller

The rate controller chooses whether to expand,

lessening, or hold Ar at the recipient relying upon the

flag got from the over-utilize identifier. At first, the rate

controller continues expanding Ar until over-utilize is

distinguished by the over-utilize locator. Figure

additionally delineates how the rate controller modifies

in view of the signs got by the over-utilize identifier.

A clog/over-utilize flag dependably brings about

diminishing the rate, while under-utilize dependably

brings about keeping the rate unaltered. The condition

of the rate controller converts into accessible rate at the

beneficiary, Ar, as appeared in condition (1). Ar is sent

back to the sender as a REMB (Receiver Estimated

Maximum Bandwidth) 1 message in a RTCP report.

Sender-side controller

The sender-side controller is misfortune based and

registers the sending rate at the sender, As in Kbps and

is appeared on the left half of Figure 1. As is Figured

each time (tk) the kth RTCP report or a REMB

message is gotten from the beneficiary. The estimation

of As depends on the part of lost bundles fl(tk) as takes

after:

On the off chance that the bundle misfortune is in the

vicinity of 2% and 10%, the sending rate stays

unaltered. On the off chance that over 10% of the

bundles is accounted for lost, the rate is

multiplicatively diminished. In the event that the

parcel misfortune is littler than 2%, the sending rate

is directly expanded. Besides, the sending rate can

never surpass the last accessible rate at the

beneficiary Ar(tk), which is gotten through REMB

Kd |mi | <
γ
i-1

 Ku otherwise

Volume 3, Issue 1, January-February-2018 | www.ijsrcseit.com | UGC Approved Journal [Journal No : 64718]

 35

messages from the recipient as found in Figure1.

Experimental Setup

Figure 3. WebRTC's media processing pipeline.

In this area, the portray setup utilized for experimental

assessment all through the paper. WebRTC handles all

media preparing as showed in Figure 3. Raw media

from the sound and video source are rst preprocessed

and after that encoded at a given target rate. These

casings are then packe-tized and sent to the recipient

over RTP/UDP. These edges are therefore depacketized

and decoded, which gives the crude video input that

can be rendered at the recipient.

Figure 4. Experimental setup used for performance

evaluation where the network limiter is simulated using

Dummynet.

The assessment of WebRTC is isolated into two

sections. In the rest part, the imitate engineered arrange

conditions to examine the execution of WebRTC in

controlled settings. In the second part, the concentrate

on trial assessment on genuine systems and especially

concentrate on remote systems. The trial assessment

setup for two clients is appeared in Figure 4.

For the rest part, I imitate distinctive system attributes

utilizing Dummynet [6], which enables us to include

idleness, parcel misfortune, and point of confinement

the transfer speed for both uplink and downlink. To

maintain a strategic distance from extra inertness and

system confinements, the interface both WebRTC

endpoints to a similar nearby system through a wire.

In the greater part of our tests, the utilize gadgets with

adequate handling and memory ability to guarantee that

the encoding and translating of the video streams are

not influenced because of the gadgets themselves. To

guarantee this, they use WebRTC's RTC Stats Report

API usefulness which demonstrates if the video quality

is restricted because of memory or calculation control

at the gadgets. Unless specified else, I utilize the latest

form of WebRTC (bolstered by Google Chrome

adaptation 52 and onwards) at all customers, with the

default sound and video codec's OPUS and VP8,

separately. Rather than utilizing a webcam encourage

and amplifier sound flag, the misuse Google Chrome's

phony gadget usefulness to bolster the program a

circling video and sound track to get similar outcomes.

For every one of our tests (unless specified else), I

utilize the accompanying video with a determination of

1920x1080 at 50 outlines for each second with

consistent bitrate: in to tree 2. To get execution

measurements, the utilize WebRTC's worked in

RTCStatsReport 3, which contains point by point

insights about information being exchanged between

the companions.

III. SYNTHETIC NETWORK CONDITIONS

In this section I evaluate the performance of

WebRTC's GCC algorithm in synthetic yet typical

network scenarios using Dummynet.

Static network conditions

Figure 5 demonstrates the outcomes for the situations

when both the uplink and downlink transfer speed are

constrained to 1500Kbps, 750Kbps, and 250Kbps.

See that WebRTC is dog as of late constrained to

sending at 2500Kbps, as set in the program 4. At the

point when the transfer speed is restricted, it utilizes

80% of the accessible transmission capacity and can

keep up a steady information rate. By persistently

bringing down the accessible data transmission in

extra tests, I watched that at least 20Kbps is

important to build up a video call between two

gatherings. In any case, no less than 250Kbps of

accessible transmission capacity is important to get a

to some degree worthy casing rate (25 Frames for

every Second (FPS)) at the most reduced conceivable

Volume 3, Issue 1, January-February-2018 | www.ijsrcseit.com | UGC Approved Journal [Journal No : 64718]

 36

video determination (480x270). It takes longer to

achieve the greatest information rate, particularly

when I take a gander at the 250Kbps, where it takes

around 10 seconds for any information to take after

between the two nodes.

Figure 5. Data rate with limited bandwidth and

without any constraints (100Mbps or more available

bandwidth).

Figure 6. Data rate with additional latency.

Next, they add additional inactivity to the call, as

appeared in Figure 6. Obviously, this does not

influence the information rate, since the GCC

calculation just reacts to idleness variety. How-ever, it

prompts delays in the discussion. ITU-T

Recommendation G.114 [1] determines that restricted

transmission deferral ought to ideally be kept beneath

150ms, and delays over 400ms are viewed as

unsatisfactory. While including delay, additionally

watch that it takes more time to set up the call and for

information to stream between both end focuses, which

contrarily influence client encounter. When information

streams, it takes around 10 seconds to achieve its

greatest information rate, paying little mind to the

additional postponement. This deferral is not as much

as what is normal from the GCC conditions where the

rate would increment with 5% as appeared in condition

(6). This is on the grounds that once an association is

set up, WebRTC utilizes a conceivable.

Figure 7. Data rate with packet loss.

I for the following examination drop a specific level of

all bundles: 5%, 10%, and 20%. The outcomes are

appeared in Figure 7. The outcomes coordinate our

desires in light of Equation (6). GCC just reductions

the sending rate when over 10% bundle misfortune is

distinguished. The sending rate stays unaltered in the

vicinity of 2% and 10% and the rate is expanded when

under 2% of the parcels are lost. There-fore, 5% parcel

misfortune gradually merges to the most extreme

information rate and at 10% bundle misfortune; the

information rate joins to at least 50Kbps, which totally

comprises of sound information (the sound stream isn't

liable to clog control by GCC because of its low

information rate [12]).

IV. WIRELESS PERFORMANCE

In this area, I assess the execution of WebRTC over

genuine systems. I particularly concentrate on

concentrate the effect of a Wi-Fi hop on WebRTC.

Benchmarking

In Section 4, I watched that GCC is delicate to changes

in dormancy and parcel misfortunes. Transmitting over

remote net-works may bring about burst parcel

misfortunes and dynamic latencies because of resulting

retransmissions, particularly if the conclusion to-end

Round Trip Time (RTT) of the WebRTC association is

substantial. In this area, portray the impacts of remote

connections on the execution of WebRTC by looking at

against the execution on wired connections.

I consider 3 kinds of WebRTC nodes:i) a local wireless

node, (ii) a local wired node, and (iii) remote wired

nodes. I utilized a 2013 ASUS Nexus 7 tablet as a

neighbourhood remote node associated with an IEEE

802.11 DD-WRT empowered Access Point (AP). The

wired node is either a neighbourhood machine situated

in our lab in New York City or a remote server running

Volume 3, Issue 1, January-February-2018 | www.ijsrcseit.com | UGC Approved Journal [Journal No : 64718]

 37

in Amazon EC2 cloud. I think about two cases for the

remote server: one in the AWS Oregon accessibility

zone and one in the AWS Sydney accessibility zone

which give distinctive extents of RTT. This enables us

to contemplate the effect of higher RTT when

contrasted with the neighbourhood machine.

Both the local and remote machines run Ubuntu 14.04

with Google Chrome 57.0 as the program. I utilize the

same infused video les for a reasonable examination. In

addition, every one of the machines have adequate

computational energy to dispose of the effect of

gadgets on video execution. A virtual show support

was utilized on the EC2 servers to run WebRTC on

Chrome in headless mode. For the remote node, I

utilized 5GHz channels to limit the impedance from

other IEEE 802.11 systems. To copy the states of high

misfortune situations, the AP transmission influence

was set to 1mW. We explore different avenues

regarding diverse channel conditions with the remote

node being in an indistinguishable room from the AP

(roughly 5 feet away), and also outside of the room

(around 25 feet away).

Figure 7 demonstrates normal call measurements for

two completely wired calls with one wired node

situated in the NYC territory in the lab and the other

node in Oregon or Sydney. The NYC node was

infusing a video encoded at 50FPS, and the remote

nodes were utilizing a video encoded at 60FPS. The

normal RTTs for the Oregon and Sydney calls were

214.86ms, separately. As needs be, the term these

situations as \medium" and \high" call latencies when

contrasted with \short" inactivity situation with the two

nodes in the NYC zone. These outcomes set up a

standard execution of WebRTC in practical system

conditions.

Next, I perform video calls with one remote node and

the other node either being a neighbourhood wired

node or one of the two remote nodes. A 720p video

encoded in 50FPS was utilized over every one of the 3

cases. On the remote node, the cam-period on the

Nexus tablet was utilized as video source, since video

couldn't be infused into the Android conveyance of

Chrome without establishing the gadget.

V. CONCLUSION

In this paper, I assessed the execution of WebRTC-

based video conferencing, with the fundamental

concentrate being on the Google Congestion Control

(GCC) calculation. Our assessments in manufactured,

yet ordinary, arrange situations demonstrate that

WebRTC is delicate to varieties in RTT and parcel

misfortunes. The likewise assessed the effect of various

video codec's, mo-bile gadgets, and topologies on

WebRTC video calls. Further, our assessments on

genuine wired and remote systems demonstrate that

burst bundle misfortunes and retransmissions over long

RTTs can particularly prompt poor video execution.

The source code for setting up and assessing the trial

situations portrayed in this paper is accessible at:

https://gitnode.com/Wimnet/webrtc performance.

VI. REFERENCES

[1]. One-way transmission time. ITU-T, G.114 (May

2003).

[2]. Amirante, A., Castaldi, T., Miniero, L., and

Romano, S. P. Performance analysis of the janus

webrtc gateway. In Proc. ACM AWeS'15 (2015).

[3]. Ammar, D., De Moor, K., Xie, M., Fiedler, M.,

and Heegaard, P. Video QoE killer and

performance statistics in WebRTC-based video

communication. In Proc. IEEE ICCE'16 (2016).

[4]. Bergkvist, A., Burnett, D. C., Jennings, C.,

Narayanan, A., and Aboba, B. Webrtc 1.0: Real-

time communication between browsers. online,

2016. http://www.w3.org/TR/webrtc/.

[5]. Brakmo, L. S., and Peterson, L. L. TCP Vegas:

End to end congestion avoidance on a global

internet. IEEE J. Sel. Areas Commun. 13, 8

(1995), 1465{1480.

[6]. Carbone, M., and Rizzo, L. Dummynet revisited.

SIGCOMM Comput. Commun. Rev. 40, 2

(2010), 12{20.

[7]. Carlucci, G., De Cicco, L., Holmer, S., and

Mascolo, S. Making Google congestion control

robust over Wi-Fi networks using packet

grouping. In Proc. ACM ANRW'16 (2016).

[8]. Carlucci, G., De Cicco, L., and Mascolo, S.

Controlling queuing delays for real-time

communication: the interplay of E2E and AQM

algorithms. ACM SIGCOMM Computer

Commun. Rev. 46, 3 (2016).

Volume 3, Issue 1, January-February-2018 | www.ijsrcseit.com | UGC Approved Journal [Journal No : 64718]

 38

[9]. Chen, W., Ma, L., and Shen, C.-C. Congestion-

aware MAC layer adaptation to improve video

telephony over Wi-Fi. ACM Trans. Multimedia

Comput. Commun. Appl. 12, 5s (2016),

83:1{83:24.

[10]. Cicco, L. D., Carlucci, G., Holmer, S., and

Mascolo, S. Analysis and design of the google

congestion control for web real-time

communication (WebRTC). In Proc. ACM

MMsys'16 (2016).

[11]. Cicco, L. D., Carlucci, G., and Mascolo, S.

Understanding the dynamic behaviour of the

google congestion control for RTCWeb. In Proc.

IEEE PV'13 (2013).

[12]. De Cicco, L., Carlucci, G., and Mascolo, S.

Experimental investigation of the google

congestion control for real-time ows. In Proc.

ACM SIGCOMM FhMN'13 (2013).

[13]. Fund, F., Wang, C., Liu, Y., Korakis, T., Zink,

M., and Panwar, S. S. Performance of DASH and

WebRTC video services for mobile users. In

Proc. PV'13 (2013).

[14]. Hardie, T., Jennings, C., and Turner, S. Real-

time communication in web-browsers. online,

2012. https://tools.ietf.org/wg/rtcweb/.

[15]. Homer, S., Lundin, H., Carlucci, G., Cicco, L.

D., and Mascolo, S. A Google congestion control

algorithm for real-time communication. IETF

draft, 2015. https: //tools.ietf.org/html/draft-ietf-

rmcat-gcc-01.

[16]. Jacobson, V. Congestion avoidance and control.

In Proc. ACM SIGCOMM'88 (1988).

[17]. Johansson, I. Self-clocked rate adaptation for

conversational video in LTE. In Proc. ACM

SIGCOMM CSWS'14 (2014).

[18]. Mukherjee, D., Bankoski, J., Grange, A., Han, J.,

Koleszar, J., Wilkins, P., Xu, Y., and Bultje, R.

The latest open-source video codec VP9-an

overview and preliminary results. In IEEE

PCS'13 (2013).

[19]. Nagy, M., Singh, V., Ott, J., and Eggert, L.

Congestion control using FEC for conversational

multimedia communication. In Proc. ACM

MMSys'14 (2014).

[20]. Nam, H., Kim, K.-H., and Schulzrinne, H. QoE

matters more than QoS: Why people stop

watching cat videos. In Proc. IEEE

INFOCOM'16 (2016).

[21]. Schulz-Zander, J., Mayer, C., Ciobotaru, B.,

Schmid, S., Feldmann, A., and Riggio, R.

Programming the home and enterprise WiFi with

OpenSDWN. In Proc. ACM SIGCOMM'15

(2015).

[22]. Shalunov, S., Hazel, G., Iyengar, J., and

Kuehlewind, M. Low extra delay background

transport (LEDBAT). IETF RFC 6817, 2012.

[23]. Singh, V., Lozano, A. A., and Ott, J.

Performance analysis of receive-side real-time

congestion control for WebRTC. In Proc. IEEE

PV'13 (2013).

[24]. Wei, D. X., Jin, C., Low, S. H., and Hegde, S.

FAST TCP: motivation, architecture, algorithms,

performance. IEEE/ACM Trans. Netw. 14, 6

(2006), 1246{1259.

[25]. Winstein, K., Sivaraman, A., Balakrishnan, H., et

al. Stochastic forecasts achieve high throughput

and low delay over cellular networks. In Proc.

USENIX NSDI'13 (2013).

[26]. Yiakoumis, Y., Katti, S., Huang, T.-Y.,

McKeown, N., Yap, K.-K., and Johari, R. Putting

home users in charge of their network. In Proc.

ACM UbiComp'12 (2012).

[27]. Zhu, X., and Pan, R. NADA: A uni_ed

congestion control scheme for low-latency

interactive video. In Proc. IEEE PV'13 (2013).

