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ABSTRACT 
 

High-speed routers rely on well-designed packet buffers that support multiple queues, provide large capacity 

and short response times. Some researchers suggested combined SRAM/DRAM hierarchical buffer architectures 

to meet these challenges. However, these architectures suffer from either large SRAM requirement or high 

time-complexity in the memory management. In this paper, we present scalable, efficient, and novel 

distributed packet buffer architecture.  Two fundamental issues need to be addressed to make this architecture 

feasible: 1) how to minimize the overhead of an individual packet buffer; and 2) how to design scalable packet 

buffers using independent buffer subsystems. We address these issues by first designing an efficient compact 

buffer that reduces the SRAM size requirement by (k - 1)/k. Then, we introduce a feasible way of coordinating 

multiple subsystems with a load-balancing algorithm that maximizes the overall system performance. Both 

theoretical analysis and experimental results demonstrate that our load-balancing algorithm and the distributed 

packet buffer architecture can easily scale to meet the buffering needs of high bandwidth links and satisfy the 

requirements of scale and support for multiple queues. 
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I. INTRODUCTION 

 
The phenomenal growth of the Internet has been 

fueled by the rapid increase in the communication 

link bandwidth. Internet routers play a crucial role 

in sustaining this growth by being able to switch 

packets extremely fast to keep up with the growing 

bandwidth (line rate).This demands sophisticated 

packet switching and buffering techniques. Packet 

buffers need to be designed to support large capacity, 

multiple queues, and provide short response times. 

 

The router buffer sizing is still an open issue. The 

traditional rule of thumb for Internet routers states 

that the routers should be capable of buffering 

RTT_R data, where RTT is a round-trip time for 

flows passing through the router, and R is the line 

rate. In the author claimed that the size of buffers in 

backbone routers can be made very small at the 

expense of a small loss in throughput. Focusing on 

the performance of individual TCP flows, the author 

claimed in that the output/input capacity ratio at a 

network link largely determines the required buffer 

size. If the output/input capacity ratio is lower than 

one, the loss rate follows a power-law reduction with 

the buffer size and significant buffering is needed. 

Given everlasting controversy, nowadays, routers 

manufacturers still seem to favor the use of large 

buffers. For instance, the Cisco CRS-1 modular 

service card with a 40 Gbps line rate incorporates a 2 

GB packet buffer memory per line card .In order to 

support fine-grained IP quality of service (QoS) 
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requirements, nowadays, a packet buffer usually 

maintains thousands of queues. For example, the 

Juniper E-series routers maintain as many as 64,000 

queues. Given the increasing popularity of Open 

Flow, a packet buffer that supports millions of queues 

is always desired.  

 

Furthermore, a packet buffer should be capable of 

sustaining continuous data streams for both ingress 

and regress. With the ever-increasing line rate, 

current available memory technologies, namely 

SRAM or DRAM alone cannot simultaneously satisfy 

these three requirements. This prompted researchers 

to suggest hybrid SRAM/DRAM (HSD) architecture 

with a single DRAM, interleaved DRAMs or parallel 

DRAMs sandwiched between SRAMs .In this paper, 

we briefly review previous work on packet Buffer 

architectures and present scalable and efficient 

hierarchical packet buffer architecture. This is our 

first attempt to combine the merits of two previously 

published packet buffer architectures consequently; 

the SRAM occupancy has been significantly reduced. 

By fully exploring the advantage of parallel DRAMs, 

we first propose a memory management algorithm 

(MMA) called Random Round Robin (RRR). 

Thereafter, we devise a “traffic-aware “approach 

which aims to provide different services for different 

types of data streams. This approach further reduces 

the system overhead. Both mathematical analysis and 

simulation demonstrate that the proposed 

architecture together with its algorithm reduce the 

overall SRAM requirement significantly while 

providing guaranteed performance in terms of low 

time  complexity, upper bounded drop rate, and 

uniform allocation of resources. In one simulation, 

the proposed architecture reduces the size of SRAM 

by more than 95 percent and the maximal delay is 

only us-level, when the traffic intensity is 76 percent. 

 

Existing System 

The router buffer sizing is still an open issue. The 

traditional rule of thumb for Internet routers states 

that the routers should be capable of buffering 

RTT*R data, where RTT is a round-trip time for 

flows passing through the router, and R is the line 

rate. Many researchers claimed that the size of 

buffers in backbone routers can be made very small 

at the expense of a small loss in throughput.  

 

Focusing on the performance of individual TCP flows, 

researchers claimed that the output/input capacity 

ratio at a network link largely determines the 

required buffer size. If the output/input capacity 

ratio is lower than one, the loss rate follows a power-

law reduction with the buffer size and significant 

buffering is needed. 

 

Proposed System 

We devise a “traffic-aware” approach which aims to 

provide different services for different types of data 

streams. This approach further reduces the system 

overhead. Both mathematical analysis and simulation 

demonstrate that the proposed architecture together 

with its algorithm reduce the overall SRAM 

requirement significantly while providing 

guaranteed performance in terms of low time 

complexity, upper bounded drop rate, and uniform 

allocation of resources. 

 

MODULES: 

1. Source: It loads data and sends data to its 

router (source router). 

2. Source Router: Source router uses leaky 

bucket mechanism to maintain the buffer in 

available bandwidth. 

3. Main Router: Main router sends the forward 

packets from source to destination and 

backward packets from destination to source. 

It receives empty packets from destination to 

calculate the bandwidth of destination and 

ack packets to send the next packet to 

destination.  

4. Destination Router: It sends empty, ack 

packets to centralized router. 

5. Destination: Destination receives the data 

from destination router. 
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II. ARCHITECTURE  

 

First introduced the basic hybrid SRAM/DRAM 

architecture [8] with one DRAM sand- witched 

between two smaller SRAM memories, where the 

two SRAMs hold heads and tails of all the queues and 

the DRAM maintains the middle part of the queues. 

Shuffling packets between the SRAM and t h e D R 

AM is under the control of a memory management 

algorithm. The principal idea behind their MMA is 

to temporarily hold amount of data for each queue in 

both the ingress and egress SRAM, so as to change 

the scattered DRAM accesses into a continuous one. 

Since the batch loads are strictly limited within each 

queue, the size requirement of SRAM for the HSD 

architecture is where Q is the number of FIFO 

queues. Whenever a FIFO queue accumulates b 

amount of data, it is transferred to the DRAM 

through a single write. A SRAM queue size of 2gb 

guarantees against queue overflow. Flow further 

suggested that the size of the tail SRAM can be 

further reduced by introducing a pipeline design. 

They also introduced a so-called the Earliest Critical 

Queue First (ECQF)-MMA for the egress, which 

reduces the size of head SRAM to Q By introducing 

an extra delay the ECQF- MMA now predicts the 

most critical queue (the one that goes empty or bears 

the biggest deficit first) and fetches the 

corresponding b- size chunk [10] of data from the 

DRAM in advance. This architecture, also known as 

Nemo, has been adopted by Cisco. Distributed Packet 

Buffer Architecture In our view, all packet buffering 

techniques so far have adopted a traffic-agnostic 

approach while designing the packet buffering 

algorithms. We m u s t clarify that even though 

existing approaches do use Q queues, each queue is 

treated the same by the buffer management 

algorithms. No effort is made to exploit the inherent 

characteristics of the corresponding traffic patterns 

like the arrival rate, burst sizes, transit time 

requirements through the router, etc. However, a 

traffic -aware approach to the problem, we believe, 

will yield new possibilities for conquering the 

scalability problem. 

Per-Destination and Per-Packet Load Balancing  

You can set load-balancing to work per-destination 

or per-packet. Per-destination load balancing means 

the router distributes the packets based on the 

destination address. Given two paths to the same 

network, all packets for destination1 on that network 

go over the first path; all packets for destination2 on 

that network go over the second path, and so on. 

 

 
Figure 1. Distributed Packet Buffer Architecture 

 

This preserves packet order, with potential unequal 

usage of the links. If one host receives the majority of 

the traffic all packets use one link, which leaves 

bandwidth on other links unused. A larger number 

of destination addresses leads to more equally used 

links. To achieve more equally used links use IOS 

software to build a route-cache entry for every 

destination address, instead of every destination 

network, as is the case when only a single path exists. 

Therefore traffic for different hosts on the same 

destination network can use different paths. The 

downside of this approach is that for core backbone 

routers carrying traffic for thousands of destination 

hosts, Per-packet load-balancing means that the 

router sends one packet for destination1 over the 

first path, the second packet for (the same) 

destination1 over the second path, and so on. Per-

packet load balancing guarantees equal load across all 

links. However, there is potential that the packets 

may arrive out of order at the destination because 

differential delay may exist within the network. In 

Cisco IOS software, except the release 11.1CC, per 

packet load balancing does disable the forwarding 

acceleration by a route cache, because the route 
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cache information includes the outgoing interface. 

For per-packet load balancing, the forwarding 

process determines the outgoing interface for each 

packet by looking up the route table and picking the 

least used interface. This ensures equal utilization of 

the links, but is a processor intensive task and 

impacts the overall forwarding performance. This 

form of per-packet load balancing is not well suited 

for higher speed interfaces. 

 
Figure 2. Flow Allocation among Multiple 

Subsystems 

 

Figure 3 shows the state machine we have defined. 

Although there could be thousands of combinations, 

we only reserve six critical states. They are 

“unallocated”, “large”, “small” and three intermediate 

states “large-small”, “small-large” and “large-small-

large”. Any flow can switch its state between “small” 

and “large” smoothly with certain constrains. 

 
Figure 3. Flow States 

Meanwhile, it is strictly controlled that any flow can 

only possess no more than three serving states at any 

time, i.e. at most 2 turning points. This helps the 

system minimize the overhead of state maintenance. 

Based on the state machine above, we devise a load-

balancing algorithm. The pseudo code of our 

algorithm is shown in Fig. 4. The algorithm is 

naturally separated into three tasks that are 

implemented at the distributor, compact packet 

buffer subsystem and the aggregator respectively. 

The tasks communicate with each other through the 

centralized flow table. 

 

 
Figure 4. Load-balancing algorithm 

 

III. SIMULATIONS  

 

Our experimental results are presented in this section. 

Unless otherwise specified, the default for all the 

experiments is as specified in Table 1. 

Table 1. Default Parameters 

 
 

We define a timeslot as the minimal working span 

where each subsystem is capable of processing 

exactly one cell. Since there are four subsystems, for 

each timeslot, at most four cells are generated 

depending on the traffic intensity. Analyses on real-

life traces indicated that the top 10% of flows 

account for over 90% of the packets and the bytes 

transmitted [23]. To be modest, in the following 

simulations, top 20% of flows accounts for 80% 

overall cells. Meanwhile, in order to observe the 

dynamic behavior of the entire system, the 

simulations are always separated into three phases. 
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Assume the simulation lasts for X timeslots. For the 

first 0.2*X timeslots, there is only input without 

output where cells are backlogged. In this way, we 

can create an initial backlog and simulate the 

situation when the congestion happens. After 

0.2*X+1 timeslots, a full-speed output begins while 

input maintains. With backlogged cells in the first 

phase, we can monitor the system performance in 

detail, especially how the load-balancing algorithm 

behaves. After 0.5*X timeslots, the input stops while 

only the output maintains fetching any backlogged 

cells. In this way, we can simulate the situation when 

the system is lightly loaded. Moreover, we choose 

the parallel system (i.e. PHSD in [19]) as the basic 

reference standard of our distributed system. Because 

it is the best parallel architecture we known so far 

which represents the previous “flow-agnostic” 

approaches. 

 

 
Figure 5. The overall active queues for both architectures 

 

 
Figure 6. Flow-aware services based on probability method 

 

 
Figure 7. Active queues allocations among four subsystems 

 

Since our algorithm does not refer the flow 

assignment status in balancing, we are curious about 

the actual distribution of active queues among 

subsystems. Fig. 7 shows the distribution of active 

queues among multiple subsystems. By increasing 

flow number from 100 to 1000, we observe that the 

unbalanced distribution is greatly improved which 

matches pervious mathematical analyses. We also 

monitor the length of front-buffers. As shown in Fig. 

8, the average FIFO lengths for both algorithms are 

much less than 100 and the distributed system always 

outperform the parallel one. We clearly observe that 

the average FIFO length of distributed system stays 

at a constant around 16, which matches the 

mathematic analyses as well. Besides smaller average 

value of FIFO length, the distributed system also 

performs more smoothly. 
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Figure 8. The number of backlogged cells in a front-

buffer 

 

IV. CONCLUSION  

 

Unlike the previous approaches, our design dispenses 

with both the head and tail caches, keeping only tiny 

distributed front-buffers inside each subsystem. Each 

flow is only mapped to approximately one queue in a 

compact buffer. Thus, it maintains much less physical 

queues compared to other approaches and reduces 

the size of SRAM significantly. The significance of 

this research lies in the bold new direction towards 

distributed scalable buffer design that we plan to 

pursue. In particular, our approach yields a scalable, 

independent subsystem based packet buffer 

architecture that can easily be tailored to meet the 

specific line rate and traffic requirements for 

different switches, and match the flow-level 

requirements including bandwidth and delay 

guarantees within a switch. Our approach will also 

yield a power efficient buffer design, where parts of 

the buffer may be switched on and off based on the 

real-time traffic arrival rates and buffering 

requirements. 
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