
CSEIT183172 | Received : 05 Jan 2018 | Accepted : 19 Jan 2018 | January-February-2018 [(3) 1 : 236-241]

International Journal of Scientific Research in Computer Science, Engineering and Information Technology

© 2018 IJSRCSEIT | Volume 3 | Issue 1 | ISSN : 2456-3307

236

Distributed Packet Buffers for High Bandwidth Switches and

Routers
Maragoni Mahendar1, Pinnapureddy Manasa2

1
Assistant. Professor, Department of CSE, Avanti’s Scientific of Technological and Research Academy. Hyderabad,

Telangana, India
2
M.Tech Student, Department of CSE, Avanti’s Scientific of Technological and Research Academy, Hyderabad, Telangana,

India

ABSTRACT

High-speed routers rely on well-designed packet buffers that support multiple queues, provide large capacity

and short response times. Some researchers suggested combined SRAM/DRAM hierarchical buffer architectures

to meet these challenges. However, these architectures suffer from either large SRAM requirement or high

time-complexity in the memory management. In this paper, we present scalable, efficient, and novel

distributed packet buffer architecture. Two fundamental issues need to be addressed to make this architecture

feasible: 1) how to minimize the overhead of an individual packet buffer; and 2) how to design scalable packet

buffers using independent buffer subsystems. We address these issues by first designing an efficient compact

buffer that reduces the SRAM size requirement by (k - 1)/k. Then, we introduce a feasible way of coordinating

multiple subsystems with a load-balancing algorithm that maximizes the overall system performance. Both

theoretical analysis and experimental results demonstrate that our load-balancing algorithm and the distributed

packet buffer architecture can easily scale to meet the buffering needs of high bandwidth links and satisfy the

requirements of scale and support for multiple queues.

Keywords : Distributed Packet Buffers, SRAM, DRAM, RTT, Cisco CRS, TCP, HSD

I. INTRODUCTION

The phenomenal growth of the Internet has been

fueled by the rapid increase in the communication

link bandwidth. Internet routers play a crucial role

in sustaining this growth by being able to switch

packets extremely fast to keep up with the growing

bandwidth (line rate).This demands sophisticated

packet switching and buffering techniques. Packet

buffers need to be designed to support large capacity,

multiple queues, and provide short response times.

The router buffer sizing is still an open issue. The

traditional rule of thumb for Internet routers states

that the routers should be capable of buffering

RTT_R data, where RTT is a round-trip time for

flows passing through the router, and R is the line

rate. In the author claimed that the size of buffers in

backbone routers can be made very small at the

expense of a small loss in throughput. Focusing on

the performance of individual TCP flows, the author

claimed in that the output/input capacity ratio at a

network link largely determines the required buffer

size. If the output/input capacity ratio is lower than

one, the loss rate follows a power-law reduction with

the buffer size and significant buffering is needed.

Given everlasting controversy, nowadays, routers

manufacturers still seem to favor the use of large

buffers. For instance, the Cisco CRS-1 modular

service card with a 40 Gbps line rate incorporates a 2

GB packet buffer memory per line card .In order to

support fine-grained IP quality of service (QoS)

Volume 3, Issue 1, January-February-2018 | www.ijsrcseit.com | UGC Approved Journal [Journal No : 64718]

 237

requirements, nowadays, a packet buffer usually

maintains thousands of queues. For example, the

Juniper E-series routers maintain as many as 64,000

queues. Given the increasing popularity of Open

Flow, a packet buffer that supports millions of queues

is always desired.

Furthermore, a packet buffer should be capable of

sustaining continuous data streams for both ingress

and regress. With the ever-increasing line rate,

current available memory technologies, namely

SRAM or DRAM alone cannot simultaneously satisfy

these three requirements. This prompted researchers

to suggest hybrid SRAM/DRAM (HSD) architecture

with a single DRAM, interleaved DRAMs or parallel

DRAMs sandwiched between SRAMs .In this paper,

we briefly review previous work on packet Buffer

architectures and present scalable and efficient

hierarchical packet buffer architecture. This is our

first attempt to combine the merits of two previously

published packet buffer architectures consequently;

the SRAM occupancy has been significantly reduced.

By fully exploring the advantage of parallel DRAMs,

we first propose a memory management algorithm

(MMA) called Random Round Robin (RRR).

Thereafter, we devise a “traffic-aware “approach

which aims to provide different services for different

types of data streams. This approach further reduces

the system overhead. Both mathematical analysis and

simulation demonstrate that the proposed

architecture together with its algorithm reduce the

overall SRAM requirement significantly while

providing guaranteed performance in terms of low

time complexity, upper bounded drop rate, and

uniform allocation of resources. In one simulation,

the proposed architecture reduces the size of SRAM

by more than 95 percent and the maximal delay is

only us-level, when the traffic intensity is 76 percent.

Existing System

The router buffer sizing is still an open issue. The

traditional rule of thumb for Internet routers states

that the routers should be capable of buffering

RTT*R data, where RTT is a round-trip time for

flows passing through the router, and R is the line

rate. Many researchers claimed that the size of

buffers in backbone routers can be made very small

at the expense of a small loss in throughput.

Focusing on the performance of individual TCP flows,

researchers claimed that the output/input capacity

ratio at a network link largely determines the

required buffer size. If the output/input capacity

ratio is lower than one, the loss rate follows a power-

law reduction with the buffer size and significant

buffering is needed.

Proposed System

We devise a “traffic-aware” approach which aims to

provide different services for different types of data

streams. This approach further reduces the system

overhead. Both mathematical analysis and simulation

demonstrate that the proposed architecture together

with its algorithm reduce the overall SRAM

requirement significantly while providing

guaranteed performance in terms of low time

complexity, upper bounded drop rate, and uniform

allocation of resources.

MODULES:

1. Source: It loads data and sends data to its

router (source router).

2. Source Router: Source router uses leaky

bucket mechanism to maintain the buffer in

available bandwidth.

3. Main Router: Main router sends the forward

packets from source to destination and

backward packets from destination to source.

It receives empty packets from destination to

calculate the bandwidth of destination and

ack packets to send the next packet to

destination.

4. Destination Router: It sends empty, ack

packets to centralized router.

5. Destination: Destination receives the data

from destination router.

Volume 3, Issue 1, January-February-2018 | www.ijsrcseit.com | UGC Approved Journal [Journal No : 64718]

 238

II. ARCHITECTURE

First introduced the basic hybrid SRAM/DRAM

architecture [8] with one DRAM sand- witched

between two smaller SRAM memories, where the

two SRAMs hold heads and tails of all the queues and

the DRAM maintains the middle part of the queues.

Shuffling packets between the SRAM and t h e D R

AM is under the control of a memory management

algorithm. The principal idea behind their MMA is

to temporarily hold amount of data for each queue in

both the ingress and egress SRAM, so as to change

the scattered DRAM accesses into a continuous one.

Since the batch loads are strictly limited within each

queue, the size requirement of SRAM for the HSD

architecture is where Q is the number of FIFO

queues. Whenever a FIFO queue accumulates b

amount of data, it is transferred to the DRAM

through a single write. A SRAM queue size of 2gb

guarantees against queue overflow. Flow further

suggested that the size of the tail SRAM can be

further reduced by introducing a pipeline design.

They also introduced a so-called the Earliest Critical

Queue First (ECQF)-MMA for the egress, which

reduces the size of head SRAM to Q By introducing

an extra delay the ECQF- MMA now predicts the

most critical queue (the one that goes empty or bears

the biggest deficit first) and fetches the

corresponding b- size chunk [10] of data from the

DRAM in advance. This architecture, also known as

Nemo, has been adopted by Cisco. Distributed Packet

Buffer Architecture In our view, all packet buffering

techniques so far have adopted a traffic-agnostic

approach while designing the packet buffering

algorithms. We m u s t clarify that even though

existing approaches do use Q queues, each queue is

treated the same by the buffer management

algorithms. No effort is made to exploit the inherent

characteristics of the corresponding traffic patterns

like the arrival rate, burst sizes, transit time

requirements through the router, etc. However, a

traffic -aware approach to the problem, we believe,

will yield new possibilities for conquering the

scalability problem.

Per-Destination and Per-Packet Load Balancing

You can set load-balancing to work per-destination

or per-packet. Per-destination load balancing means

the router distributes the packets based on the

destination address. Given two paths to the same

network, all packets for destination1 on that network

go over the first path; all packets for destination2 on

that network go over the second path, and so on.

Figure 1. Distributed Packet Buffer Architecture

This preserves packet order, with potential unequal

usage of the links. If one host receives the majority of

the traffic all packets use one link, which leaves

bandwidth on other links unused. A larger number

of destination addresses leads to more equally used

links. To achieve more equally used links use IOS

software to build a route-cache entry for every

destination address, instead of every destination

network, as is the case when only a single path exists.

Therefore traffic for different hosts on the same

destination network can use different paths. The

downside of this approach is that for core backbone

routers carrying traffic for thousands of destination

hosts, Per-packet load-balancing means that the

router sends one packet for destination1 over the

first path, the second packet for (the same)

destination1 over the second path, and so on. Per-

packet load balancing guarantees equal load across all

links. However, there is potential that the packets

may arrive out of order at the destination because

differential delay may exist within the network. In

Cisco IOS software, except the release 11.1CC, per

packet load balancing does disable the forwarding

acceleration by a route cache, because the route

Volume 3, Issue 1, January-February-2018 | www.ijsrcseit.com | UGC Approved Journal [Journal No : 64718]

 239

cache information includes the outgoing interface.

For per-packet load balancing, the forwarding

process determines the outgoing interface for each

packet by looking up the route table and picking the

least used interface. This ensures equal utilization of

the links, but is a processor intensive task and

impacts the overall forwarding performance. This

form of per-packet load balancing is not well suited

for higher speed interfaces.

Figure 2. Flow Allocation among Multiple

Subsystems

Figure 3 shows the state machine we have defined.

Although there could be thousands of combinations,

we only reserve six critical states. They are

“unallocated”, “large”, “small” and three intermediate

states “large-small”, “small-large” and “large-small-

large”. Any flow can switch its state between “small”

and “large” smoothly with certain constrains.

Figure 3. Flow States

Meanwhile, it is strictly controlled that any flow can

only possess no more than three serving states at any

time, i.e. at most 2 turning points. This helps the

system minimize the overhead of state maintenance.

Based on the state machine above, we devise a load-

balancing algorithm. The pseudo code of our

algorithm is shown in Fig. 4. The algorithm is

naturally separated into three tasks that are

implemented at the distributor, compact packet

buffer subsystem and the aggregator respectively.

The tasks communicate with each other through the

centralized flow table.

Figure 4. Load-balancing algorithm

III. SIMULATIONS

Our experimental results are presented in this section.

Unless otherwise specified, the default for all the

experiments is as specified in Table 1.

Table 1. Default Parameters

We define a timeslot as the minimal working span

where each subsystem is capable of processing

exactly one cell. Since there are four subsystems, for

each timeslot, at most four cells are generated

depending on the traffic intensity. Analyses on real-

life traces indicated that the top 10% of flows

account for over 90% of the packets and the bytes

transmitted [23]. To be modest, in the following

simulations, top 20% of flows accounts for 80%

overall cells. Meanwhile, in order to observe the

dynamic behavior of the entire system, the

simulations are always separated into three phases.

Volume 3, Issue 1, January-February-2018 | www.ijsrcseit.com | UGC Approved Journal [Journal No : 64718]

 240

Assume the simulation lasts for X timeslots. For the

first 0.2*X timeslots, there is only input without

output where cells are backlogged. In this way, we

can create an initial backlog and simulate the

situation when the congestion happens. After

0.2*X+1 timeslots, a full-speed output begins while

input maintains. With backlogged cells in the first

phase, we can monitor the system performance in

detail, especially how the load-balancing algorithm

behaves. After 0.5*X timeslots, the input stops while

only the output maintains fetching any backlogged

cells. In this way, we can simulate the situation when

the system is lightly loaded. Moreover, we choose

the parallel system (i.e. PHSD in [19]) as the basic

reference standard of our distributed system. Because

it is the best parallel architecture we known so far

which represents the previous “flow-agnostic”

approaches.

Figure 5. The overall active queues for both architectures

Figure 6. Flow-aware services based on probability method

Figure 7. Active queues allocations among four subsystems

Since our algorithm does not refer the flow

assignment status in balancing, we are curious about

the actual distribution of active queues among

subsystems. Fig. 7 shows the distribution of active

queues among multiple subsystems. By increasing

flow number from 100 to 1000, we observe that the

unbalanced distribution is greatly improved which

matches pervious mathematical analyses. We also

monitor the length of front-buffers. As shown in Fig.

8, the average FIFO lengths for both algorithms are

much less than 100 and the distributed system always

outperform the parallel one. We clearly observe that

the average FIFO length of distributed system stays

at a constant around 16, which matches the

mathematic analyses as well. Besides smaller average

value of FIFO length, the distributed system also

performs more smoothly.

Volume 3, Issue 1, January-February-2018 | www.ijsrcseit.com | UGC Approved Journal [Journal No : 64718]

 241

Figure 8. The number of backlogged cells in a front-

buffer

IV. CONCLUSION

Unlike the previous approaches, our design dispenses

with both the head and tail caches, keeping only tiny

distributed front-buffers inside each subsystem. Each

flow is only mapped to approximately one queue in a

compact buffer. Thus, it maintains much less physical

queues compared to other approaches and reduces

the size of SRAM significantly. The significance of

this research lies in the bold new direction towards

distributed scalable buffer design that we plan to

pursue. In particular, our approach yields a scalable,

independent subsystem based packet buffer

architecture that can easily be tailored to meet the

specific line rate and traffic requirements for

different switches, and match the flow-level

requirements including bandwidth and delay

guarantees within a switch. Our approach will also

yield a power efficient buffer design, where parts of

the buffer may be switched on and off based on the

real-time traffic arrival rates and buffering

requirements.

V. REFERENCES

[1]. S. Iyer, R. Kompella and N. McKeown,

"Designing packet buffers for router line cards",

in IEEE Transactions on Networking, vol.16, Jun.

2008, Issue 3.

[2]. Samsung SRAM Chips,

http://www.samsung.com/global/business/semico

nductor/prod

ucts/sram/Products_HighSpeedSRAM.html

[3]. Samsung DRAM Chips,

http://www.samsung.com/global/business/semico

nductor/prod ucts/dram/Products_DRAM.html

[4]. J.Corbal, R.Espasa, and M.Valero, "Command

vector memory systems: High performance at

low cost," In Proceedings of the International

Conference on Parallel Architectures and

Compilation Techniques, pp.68-77, October

1998.

[5]. K.G. Coffman and A.M.Odlyzko, "Is there a

"Moore's Law" for data traffic?" Handbook of

Massive Data Sets, eds., Kluwer, 2002,pp.47-93.

Author Details

Maragoni Mahendar has Received B.TECH Degree

in Computer Science Engineering (C.S.E) from

Avanthi’s Scientific Technological & Research

Academy, Gunthapally, Rangareddy in 2012, under

Jawaharlal Nehru Technological University

Hyderabad and Masters Technology in Computer

Science Engineering (C.S.E) from Nova College of

Engineering & Technology, Jafferguda, Ranga Reddy

2014, under Jawaharlal Nehru Technological

University Hyderabad. He is dedicated to teaching

field since the last 4 years. His field of interest

includes Cloud Computing, Data science & Big Data.

He published Two International Journals and

Participated in 4 International conferences. At

present working as Asst.Professor, Department of

Computer science and Engineering in Avanthi's

Scientific Technological & Research Academy, Ranga

Reddy, Telangana, India.

Email Id : m.mahender527@gmail.com

PINNAPUREDDY MANASA (14PT1D5809) M.Tech

Student in Dept. of CSE from Avanti’s Scientific of

Technological and Research Academy. Telangana,

INDIA.

http://www.phdportal.com/disciplines/286/web-technologies-cloud-computing.html
mailto:m.mahender527@gmail.com

