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ABSTRACT 
 

To translate brain activity signals into control signals for external devices a system called Brain–computer 

interface (BCI) is used. It is difficult for current BCI systems to provide the multiple independent control 

signals necessary for the multi-degree continuous control of a wheelchair. The present paper address this 

challenge by adopting the motor imagery based mu rhythm and the P300 potential to control a brain-actuated 

real time wheelchair. The main objective of the present work is to provide a greater number of commands for a 

wheelchair with increased accuracy to the user. 
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I. INTRODUCTION 

 

Today because of the advantages such as, non-

invasive, relatively convenient, and affordable 

ELECTROENCEPHALOGRAM (EEG)-based brain 

computer interfaces (BCIs) have attracted a great deal 

of attention. It is possible to provide a new way of 

communications for special users who cannot 

communicate via normal pathways with aid of a BCI 

system. It can send commands, controlled by brain 

activity and distinguished by EEG signal processing. 

The main features which can be extracted from EEG, 

are classified as six brain rhythms based on the 

differences in frequency ranges; i.e  delta (1- 4 Hz), 

theta (4-7 Hz), alpha (8-12 Hz), mu (8-13 Hz), beta 

(12-30 Hz), and gamma (25-100 Hz). The delta and 

theta rhythms occur in high emotional conditions or 

in a sleep stage. The alpha rhythm happens in awake 

and eyes closed relax condition. The oscillation in 

alpha rhythm has smooth pattern. The beta rhythm 

pattern is desynchronized and the condition is the 

normal awake open eyes. The gamma rhythm is 

acquired from somatosensory cortex and mu rhythm 

from sensorimotor cortex. 

 

Based on the EEG brain activity patterns, BCI 

systems is categorized into four different types: 

event– related desynchronization/synchronization 

(ERD/ERS), steady state visual evoke potentials 

(SSVEP), P300 component of event related potentials 

(ERPs), and slow cortical potentials (SCPs). 

Compared to other modalities for BCI approaches, 

such as the P300-based and the SCP BCIs, SSVEP-

based BCI system has the advantage of having higher 

accuracy and higher information transfer rate (ITR) 

as shown in Figure 1. In addition, short/no training 

time and fewer EEG channels are required. One 

important application of EEG-based BCIs is 

wheelchair control, which can improve the quality 

of life and increase the independence of a disabled 

user. 

 
Figure 1. A general comparison of SCP, ERD/ERS, 

P300, and SSVEP with respect to their training time 

and information transfer rate. 
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For EEG based wheelchair control the two types of 

protocols, synchronous and asynchronous, are used. 

The EEG signals used for synchronous control 

depend on the potentials evoked by visual stimuli, 

including the P300 potential and the SSVEP. This 

synchronous protocol does not allow the user to 

change the direction or route of the wheelchair as it 

moves to its destination. These synchronous 

protocols provide high accuracy but suffer from a 

low response speed. For such systems, an effective 

control commands are achieved after several seconds. 

The brain signals used for asynchronous control 

protocols are derived from motor imagery, allowing 

the user to send an appropriate command to a 

moving wheelchair. The present paper proposes a 

hybrid BCI system to provide directional and speed 

control commands to a wheelchair. The control of 

the wheelchair speed is useful to the disabled.   

 

The organization of this paper is as follows. Section 

2(Methodology) will provide detail of BCI system 

design. Section 3 (Experimental Results), present the 

experimental results of current work. Discussed in 

Section 4 (Conclusion)will conclude with the 

efficiency of proposed system.  

 

II. METHODOLOGY 

 

The methodologies include the data acquisition 

system, GUI, control mechanism, models, and 

algorithms as described in the following section. 

 

A. EEG Data Acquisitions  

A NuAmps device is used to measure scalp EEG 

signals for data acquisition. Each user wears an EEG 

cap (LT 37) that measures the signals from the 

electrodes shown in Figure 2. The EEG signals are 

referenced to the right ear. Two channels, “HEOG” 

and “VEOG”, representing eye movements are 

excluded (and not shown here). The EEG used for 

processing is recorded from Ag-AgCl electrodes that 

are placed at the sites in the frontal, central, parietal 

and occipital regions. The following 15 channels are 

included: “FC3,” “FCz,” “FC4,” “C3,” “Cz,” “C4,” 

“CP3,” “CPz,” “CP4,” “P3,” “Pz,” “P4,” O1,” “Oz,” and 

“O2.” Fig. 1 shows the locations of each site. All 

impedances are kept below 5 . The EEG signals are 

amplified, sampled at 250 Hz, and band-pass filtered 

between 0.5 and 100 Hz. 

 

B. GUI and Control Mechanism 

The GUI used in this process. A rectangular 

workspace and eight flashing buttons are included. 

The workspace is 1166 721 pixels. The eight buttons 

flash in a random order to induce P300 potentials. 

Each button is intensified for 100 ms, and the time 

interval between two consecutive button flashes is 

120 ms. Thus, one round of button flashes lasts 

960ms (1 round here is defined as a complete cycle in 

which each button flashes once). In this system, the 

subjects are required to control the direction and 

speed of the simulated or real wheelchair. Two 

choices, low and high, are available for speed control. 

To accomplish these control tasks, the BCI system 

provides the simulated or real wheelchair with the 

following four commands: turn left, turn right, 

accelerate and decelerate.  

 
Figure 2. EEG cap electrodes 

 

As shown in Table 1, the user is instructed to 

implement these commands by performing four tasks 

to produce these control commands: left-hand motor 

imagery, right-hand motor imagery, foot motor 

imagery, and attention to a specific flashing button 

without motor imagery. If left- or right-hand motor 

imagery is detected, then the simulated or real 

wheelchair turns left or right, respectively. 

Furthermore, the simulated or real wheelchair does 

not stop before turning. Separately, the system 
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detects foot movement imagery and the P300 

potential for speed control.   

Table 1.  Control Commands 

Control command Mental tasks 

Left turn Left hand Motor imagery 

Right turn Right Hand Motor 

imagery 

Deceleration  Foot Motor imagery 

Acceleration Focusing on a specific 

flashing button 

No control command Idle state 

 

C. Models and Algorithms 

The paper describes a hierarchical decision method 

to steer the simulated or real wheelchair (Figure 2) 

by using the directional and speed control commands 

detected within the user’s EEG signals. First, the 

pattern of motor imagery is extracted to identify the 

directional control commands. If left- or right-hand 

motor imagery is detected, then it is interpreted as a 

directional control command for a left or right turn. 

Otherwise, the speed control commands are 

extracted.  

 

The speed control command for acceleration or 

deceleration is determined by discriminating the 

following two tasks executed by the user. The first 

task is that the user imagines foot movement without 

attending to a specific flashing button, whereas the 

other task is that the user pays attention to the 

specific flashing button without performing any 

motor imagery. The algorithms to detect the 

direction and speed signals are described in the 

following paragraphs. 

 
Figure 2. Diagram for algorithm used in detection of 

direction speed control signals 

 

D. Detection of Directional Control Signals 

The  left- and right-hand motor imagery events are 

used to turn the simulated or real wheelchair left and 

right, respectively. One directional control command 

triggers a fixed, predefined degree of rotation. Two 

consecutive left or right turn commands lead to a 

rotation with twice the defined degree of rotation. 

Hence, the objective in directional control is to 

detect the left- and right-hand motor imagery within 

the online EEG signals. The user may be in one of 

the following five states: left-hand motor imagery, 

right-hand motor imagery, foot motor imagery, 

flashing button attention, or idle. To detect left- or 

right-hand motor imagery, the EEG signals are first 

spatially filtered with common average reference 

(CAR) and then band-pass filtered at 8–32 Hz. Next, 

compute the spatial patterns using the method of one 

versus the rest common spatial patterns (OVR-CSP). 

Based on a training dataset collected before online 

testing, a CSP transformation matrix (W) is 

calculated for each class against all of the others 

using the well-known joint diagonalization method.  

 

There are four classes of motor imagery data: left-

hand, right hand, foot and idle state. Thus, we obtain 

four CSP transformation matrices. The first and last 

rows of each CSP transformation matrix (W) 

correspond to a large response in the first and second 

conditions, respectively. Therefore, the common 

practice in a classification setting is to use several 

rows from both ends of the transformation matrix as 

spatial filters. If the number of the rows used for 

spatial filtering is too small, the classifier would fail 

to fully capture the discrimination between two 

classes; on the other hand, the classifier weights 

could severely overfit if the number of the rows is 

too large. 

 

In this study, the first and last three rows from each 

of the four CSP transformation matrices to construct 

a new transformation matrix with 24 rows selected 

for feature extraction following. The logarithmic 

variances of the projections of the EEG signals from 

the transformation matrix are used as the features of 
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the signal. Furthermore, the training data set is used 

to train four linear discriminant analysis (LDA) 

classifiers with the one versus- rest method for 

dealing with the multi-class classification problem. 

For online testing, these four LDA classifiers are 

applied to the feature vector extracted from the EEG 

data during the 1000-ms period before the current 

time point. Hence, four LDA output scores are 

obtained. Following a loss-based decoding method, 

the feature vector is given the class label 

corresponding to the maximal score. This detection is 

performed every 200 ms. The direction of the 

simulated or real wheelchair’s motion will remain 

constant if the user imagines foot movement or is 

idle with regard to motor imagery. In this case, the 

speed control signals are extracted as described in the 

next section. 

 

E. Detection of Speed Control Signals  

If no directional control signals are detected, then 

speed control signals are extracted. Unlike 

directional control, speed control is implemented by 

combining two types of EEG patterns: the ERD/ERS 

of the sensorimotor rhythms and the P300 potential. 

The speed control signal is detected by 

discriminating two states: foot motor imagery 

without button attention and focus on a specific 

button without motor imagery. There are two feature 

extractions for speed detection (Figure 2): one is for 

motor imagery detection and the other is for P300 

potential detection.  

 

First, the feature extraction for motor imagery 

detection using the training data is described. Here, 

the training data set contains two classes of data 

corresponding to foot motor imagery and the idle 

state of motor imagery (attention to a specific button). 

If a trial in the training data corresponds to the idle 

state of motor imagery, then its label is set to 1. 

Otherwise, its label is -1, corresponding to the foot 

imagery. A CSP transformation matrix (W1) is 

calculated similarly to that described earlier. Thus, a 

feature vector xj for the jth trial of the training data 

can be constructed by projecting the jth trial EEG 

signal on the top and bottom three rows of (W1)and 

then calculating their logarithm variances as the 

motor imagery features, where j= 1,…...,N. 

 

The P300 feature extraction for the jth trial of the 

training data ( j= 1,…...,N) can be performed as 

follows. First, the EEG signals are filtered between 

0.1 and 20 Hz. Then, extract a segment (0–600 ms 

after a button flash) of EEG signals from each 

channel for each flash of the button (specifically, the 

center up button in our experiment)is extracted. The 

segment is down sampled by a rate of 6 to obtain a 

data vector from each channel. For each flash of the 

specific button, a new data vector with 375 

dimensions (25 time points x 15 channels) is obtained 

by concatenating the data vectors from all 15 

channels. The feature vector (pj) in each trial is 

obtained by averaging four data vectors 

corresponding to four repeats of the button flash. If 

the trial in the training data corresponds to attention 

to the specific button, then the label is set to 1. 

Otherwise, the label is -1. 

 

After extracting the motor imagery feature xj and the 

P300 feature pj based on the training data set, a 

combination algorithm, PROB, is used to combine 

the features of these two modalities. Specifically, two 

LDA classifiers, denoted as(wX,bX) and (wP ,bP) are 

trained using the motor imagery feature vectors with 

labels and the P300 feature vectors with labels, 

respectively. Two scores for each trial’s motor 

imagery feature vector and P300 feature vector pair 

are computed using the corresponding classifiers. 

Next, calculating the sum 

of these two scores as 

 Dj= ½ {[wTX  xj + bX ] + [wTP pj +bP]}    j=1,…..N.                                                                

Using Dj, calculating two thresholds D+mean, and D-mean, 

as follows: 

D+mean = 
 

|  |
∑        

D-mean = 
 

|  |
∑                                                                                                                      

where D+ and D- denote the set of indices of Dj 

satisfying Dj> Dmean  and  Dj< Dmean, respectively , 

Dmean is the mean of all , and is the cardinality of a set. 
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In the test phase, a motor imagery feature vector is 

extracted every 200 ms using EEG data collected 

during the 1000-ms period before the current time 

point, whereas a P300 feature vector is extracted at 

every flash of the specific button as above. 

Specifically, the P300 feature extraction is based on 

the EEG data acquired during four repeats of the 

button flash (the current flash and the three prior 

flashes). The speed signal detection is performed 

every 200 ms based on the motor imagery feature 

vector updated every 200ms and the P300 feature 

vector updated every 960 ms (a complete round of 

button flashes). 

 

A score denoted as is then calculated. A label  ̂ for 

this epoch of EEG data is defined as 

 ̂  = {

                                    
                    
                                     

                                                                                

If  ̂ =1, then the system decides that the user is 

paying attention to a specific flashing button and is 

not performing any motor imagery. This case results 

in an acceleration command. If  ̂ = -1, then the 

system decides that the user is imagining foot 

movement and ignoring the flashing buttons. This 

case results in a deceleration command. If  ̂=0, then 

the user  is considered to be idle with regard to both 

motor imagery and P300 potential; no speed control 

command is given to the simulated or real 

wheelchair. 

III. RESULTS AND DISCUSSION 

 

To validate the proposed hybrid BCI system for 

detecting directional and speed control commands, 

two experiments were conducted. The first 

experiment utilized a simulated wheelchair in a 

virtual environment, and the second experiment 

used a real wheelchair.The following performance 

indices are used to assess the hybrid BCI with 

respect to directional and speed control. 

 Accuracy ra te :  the percentage o f  successful 

nav iga t ion  tasks. 

 Path length: the distance (pixels/meters) 

traveled to accomplish the task. 

 Path length optimality ratio: the ratio of the 

path length to the optimal path length. The 

optimal path length is the sum of point-to-

point distances between each pair of adjacent 

destinations. 

 Time: the time (s) to accomplish the task. 

 Time for low speed: the time (s) during which 

the simulated wheelchair travels at low    

speed. 

 Wrong speed control time: in the second 

experiment (real wheelchair), the path for the 

wheelchair is separated into ten segments; five 

segments are set for low speed and five are set 

for high speed. This index represents the time 

that the wheelchair travels at low speed in the 

segments designated for high speed and vice 

versa. 

 Collisions: the number of collisions incurred to 

the edges of the working space by the 

simulated wheelchair or to the corridor by the 

real wheelchair. 

IV. CONCLUSION 

 

This paper presents a hybrid BCI that combines the 

mu/beta rhythm resulting from motor imagery and 

the P300 potential for the directional and speed 

control of a simulated or real wheelchair. Four 

commands are each associated with a mental task. 

Specifically, the user performs left- or right-hand 

motor imagery to direct a left or right movement and 

performs foot imagery or focuses on a flashing button 

to adjust the speed of the simulated or real 

wheelchair. Two experiments were conducted. One 

used a simulated wheelchair in a virtual environment, 

and the other utilized a real wheelchair. Both 

experiments demonstrated the effectiveness of this 

method and system. 
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