
CSEIT1833362 | Received : 20 March 2018 | Accepted : 31 March 2018 | March-April-2018 [(3) 3 : 1029-1032]

International Journal of Scientific Research in Computer Science, Engineering and Information Technology

© 2018 IJSRCSEIT | Volume 3 | Issue 3 | ISSN : 2456-3307

1029

Enhancement of Public Cloud, Application Security, Using

Bcrypt Algorithm
Shri Ranjani. N*1, Ravikumar. B2

*1 Department of Computer Science and Engineering, Velammal Engineering College, Chennai
2 Assistant Professor, Department of Computer Science and Engineering, Velammal Engineering College,

Chennai

ABSTRACT

The emergence of internet has lead to the booming of internet based applications and services. One such

domain which has developed at an exponential rate is cloud computing. Nowadays, most of the applications run

on cloud environments. Even a highly critical application such as banking applications use cloud backends for

storing data. But, such applications, which has a very high confidential data do not run on private clouds. The

use of private cloud computing may not be possible for all applications as it requires more cost for creating a

cloud environment and maintaining it. We can have our application in public clouds if the data stored are not

highly confidential. This is where application level security in cloud comes into play. In this paper, we deal

about the enhancement of application level security in any application where data resides in a public cloud.

Here, we use a highly complicated cryptographic algorithm, Bcrypt, which is used to store passwords.

Keywords: Bcrypt, Public cloud, Security, Cryptography, Hashing

I. INTRODUCTION

Many applications are being deployed to cloud

environment, nowadays. The most common thing

among these applications would be an authentication

page, where a user would be prompted to enter login

credentials. We will be seeing applications which

forces the user to use a strong passwords with

criterias such as Alphanumeric, Non-sequential etc .,

in-order to increase the level of security of the

application and the data present in the application.

As the speed of processors have grown in an

enormous rate and it is predicted to have a large

amount of growth in the future, password cracking

or guessing has become very fast and easy. So, it is

the duty of the application to keep the user

passwords safer. We have enormous hardware

support to achieve this. Therefore, it is high-time

that we use a strong and complex password hashing

scheme like Bcrypt, which is derived from Blowfish

cryptographic algorithm.

In the upcoming sections, we discuss the existing

mechanisms to store password in any application.

And also, we get to understand how the data are

stored in variety of cloud platforms, provided by

different vendors.

II. METHODS AND MATERIAL

There are several password hashing mechanisms

existing in the market such as SHA(Secure Hash

Algorithm), MD(Message Digest) and so on.

Bcrypt uses a configurable iteration count. A single

time bcrypt invocation is 10 times a MD5 invocation.

This means that, using the brute-force approach to

crack a password will be 10 times more expensive

with bcrypt than with MD5.

http://ijsrcseit.com/

Volume 3, Issue 3 | March-April-2018 | http:// ijsrcseit.com

Shri Ranjani et al. Int J S Res CSE & IT. 2018 Mar-Apr;3(3) : 1029-1032

 1030

The functionality, configurable slowness of Bcrypt, is

that what it differs from other hashing algorithms.

The password hashing function can be made how

much ever speedness you want. To be precise, as

slow as you can tolerate: indeed, a slow function is

slow for everybody, attacker and defender alike.

Due to the kind of operations that are used within

the Bcrypt algorithm, we can see that it is slower

even in GPU based systems. Whereas, MD5 is, by

comparison, very easy to implement and can

efficiently run on a GPU. This means that usage of

GPU in MD5 might enhance the speed of password

cracking; while with the bcrypt the need to use the

same kind of CPU as the defender should be met by

the attacker.

Now coming to the SHA-512 algorithm, it is also a

fast hashing algorithm like MD-5. This means, once

again the attacker can crack the password faster and

easier.

The main purpose of this algorithm is to prevent the

rainbow table attacks. That is, even if the attacker

gets to know the password of one user, he may not be

able to crack the other user’s passwords stored. This

is made possible by using the mechanism called as

Salting. Salting is nothing but a mechanism by which

a random string called salt is appended to the original

string/password. In Bcrypt, a separate complex

algorithm is used, to generate these salts.

One of the major advantages of the Bcrypt password

hashing scheme is that, it is future adaptable. This

means that the complexity of the algorithm can be

increased by increasing the number of rounds in the

salt generation algorithm.

Blowfish has a block size of 64-bit and a key length

which varies from 32 bits up to 448 bits. It uses large

S-boxes and uses a Feistel structure of 16 rounds.

First we have to setup the key schedule of the

blowfish algorithm. For that, we first initialize the P-

array and S-boxes which does not have a pattern.

This randomness is brought by initializing them with

hexadecimal digits of the pi value. The secret key is

XORed with all the P-entries in order. Then a 64-bit

all-zero block is encrypted with the algorithm. The

P1 and P2 are replaced by the resultant ciphertext.

The same ciphertext is then encrypted again with the

new subkeys. Now, the P3 and P4 are replaced by the

resultant new cipher text. This continues until the

entire P-array and all the S-box entries are replaced.

Figure 1. Blowfish feistel structure

The Bcrypt algorithm uses a setup with expensive

keys known as eksblowfish which is very similar to

the normal blowfish algorithm.This setup requires

three inputs a cost, salt and key(which is used for

encryption).

The cost parameter determines the effectiveness/

complexity/expensiveness of the eksblowfish

algorithm. In this algorithm, a salt is a 128 bit value,

which is different for different key. This means that

no two secret keys will have the same salt generated.

Even in the salt generation, the user is given an

option to choose his own number of rounds. The

higher the number of rounds the more complex the

resultant salt will be.

Volume%203,%20Issue%203%20|%20March-April-2018%20
http://www.ijsrcseit.com/

Volume 3, Issue 3 | March-April-2018 | http:// ijsrcseit.com

Shri Ranjani et al. Int J S Res CSE & IT. 2018 Mar-Apr;3(3) : 1029-1032

 1031

This highly complex structure requires more

powerful hardware. As the cloud servers have a

really high power, it can be utilised to the fullest,

thus increasing the security of the application.

A dictionary attack is one in which the attacker

determines/precomputes the list of possible keys and

then use them all to determine the password. In

bcrypt algorithm, this attack is not feasible. This is

because, such type of attacks are possible only in one

way functions which can be computed easily.

Now let us compare the security features in the

public cloud platforms provided by different cloud

vendors/providers. Some of the providers are Google,

Amazon, IBM and so on.

CLOUD PROVIDER ENCRYPTION

ALGORITHM

Google AES

Amazon AES 256-bit encryption

IBM Advanced Encryption

Standard (AES) 256-bit

encryption and Secure

Hash Algorithm (SHA)-

256 hash

Figure 2. Comparison of encryption algorithm used

by different cloud providers/vendors

If we use the highly expensive, Bcrypt algorithm in a

partially secured environment, the password

cracking becomes highly time consuming for the

attacker who is trying to attack the system. Thus, we

can enhance the security of the application with the

help of highly fast computing feature of a cloud

platform.

III. CONCLUSION

In this paper, we have discussed about the different

password hashing algorithms existing in the market

and the different cloud environments provided by

different vendors. As the future trend relies mostly

on the cloud platforms and environments, it is very

important for us to move towards that trend, without

compromising the security feature of the application.

As the processing speed increases, it is our duty to

utilise the product to the fullest. If we fail to use the

computational power wisely, the application will not

be able to adapt to the future. From this, we can

conclude that the Bcrypt algorithm, which has a

highly expensive setup can be used to enhance the

security feature of any cloud deployed application.

IV. REFERENCES

[1]. Provos, Niels, Mazières, David, Talan Jason

Sutton 2012 (1999). "A Future-Adaptable

Password Scheme". Proceedings of 1999

USENIX Annual Technical Conference: 81–92.

[2]. Antony G. Robertiello and Kiran A. Bandla.

2005."Attacks on MD5 Hashed Passwords,"

Technical Report, George Mason University,

USA.

[3]. C.H. Chen, G. Horng and C.H. Hsu. 2009. "A

novel private information retrieval scheme

with fair privacy in the user side and the server

side", Int. J. Innovat. Comput. Inf. Control, Vol.

5, No. 3, pp. 801–810.

[4]. Shai Halevi and Hugo Krawczyk. "Public Key

Cryptography and password protocols",

Proceedings of the 5th ACM Conference on

Computer and Communications Security,1998.

[5]. M. Dürmuth, T. Güneysu, M. Kasper, C. Paar,

T.Yalçin, and R. Zimmermann. 2012.

"Evaluation of Standardized Password-Based

Key Derivation against Parallel Processing

Platforms," in Computer Security– ESORICS

2012, pp. 716–733

[6]. Sarvar Patel. "Number theoretic attacks on

secure password schemes". In Proceedings of

the 1997 IEEE Symposium on Security and

Privacy, Oakland,CA,May 1997

[7]. Chad R, Dougherty (31 Dec 2008).

"Vulnerability Note VU#836068 MD5

vulnerable to collision attacks". Vulnerability

notes database. CERT Carnegie Mellon

University Software Engineering Institute.

Retrieved 3 February 2017.

Volume%203,%20Issue%203%20|%20March-April-2018%20
http://www.ijsrcseit.com/

Volume 3, Issue 3 | March-April-2018 | http:// ijsrcseit.com

Shri Ranjani et al. Int J S Res CSE & IT. 2018 Mar-Apr;3(3) : 1029-1032

 1032

[8]. Philip Hawkes and Michael Paddon and

Gregory G. Rose: "Musings on the Wang et al.

MD5 Collision", 13 October 2004. Retrieved 27

July 2008.

[9]. Stevens, Marc; Bursztein, Elie; Karpman,

Pierre; Albertini, Ange; Markov, Yarik. "The

first collision for full SHA-1"

[10]. Sotirov, Alexander, Stevens, Marc, Appelbaum,

Jacob, Lenstra and Arjen et al. 2008. MD5

considered harmful today (online), Technische

Universiteit Eindhoven.

[11]. Thomas Wu.The secure remote password

protocol. In Proceedings of the 1998 Internet

Society Network and Distributed System

Security Symposium March 1998

[12]. Google Cloud Platform Documentation,

https://cloud.google.com/datastore/docs

[13]. IBM Bluemix Documentation,

https://console.bluemix.net/docs

[14]. Amazon Web Service Documentation,

https://docs.aws.amazon.com

Volume%203,%20Issue%203%20|%20March-April-2018%20
http://www.ijsrcseit.com/

