
CSEIT1833408 | Received : 15 March 2018 | Accepted : 25 March 2018 | March-April-2018 [(3) 4 : 426-431]

International Journal of Scientific Research in Computer Science, Engineering and Information Technology

© 2018 IJSRCSEIT | Volume 3 | Issue 4 | ISSN : 2456-3307

426

Multiple Cloud Service Providers with an efficient and SLO

Guaranteed cloud storage
D. G. Prasad

MCA Sri Padmathi College of Computer Sciences And Technology Tiruchanoor, Andhra Pradesh, India

ABSTRACT

Due to the increase of the advantages of the cloud computing many enterprisers started adopting the cloud

servers. There are so many cloud service providers in the cloud system. The enterprisers will choose the cloud

platform based on their satisafaction.the satisfaction of the customer mainly depends on the two things firstly

cloud configuration affects the quality of service which is an important factor affecting customer satisfaction.

Secondly customer satisfaction affects the request arrival rate of a cloud service provider. it is necessary the

clouds service brokers should provide multi cloud storage service to reduce their cost payments to the cloud

servers. . In this paper, we propose a multi-cloud Economical and SLO-guaranteed Storage Service (ES3), which

determines data allocation and resource reservation schedules with payment cost minimization and SLO

guarantee. ES3 incorporates (1) a coordinated data allocation and resource reservation method, which allocates

each data item to a datacenter and determines the resource reservation amount on datacenters by calculating all

the pricing policies; (2) a genetic algorithm based data allocation adjustment method, to maximize the data

reservation benefit in all data centers.. We also propose several algorithms to enhance the cost efficient and

SLO guarantee performance of ES3 including i) dynamic request redirection, ii) grouped Gets for cost

reduction, iii) lazy update for cost-efficient Puts, and iv) concurrent requests for rigid Get SLO guarantee.

Keywords: Cloud Storage, SLO, Payment Cost.

I. INTRODUCTION

Cloud providers, such as Amazon S3, Google Cloud

Storage (GCS) and Windows Azure offer storage as a

service. It is important for cloud providers to reduce

Service Level Agreement (SLA) violations to provide

high quality of service and reduce the associated

penalties High data durability is usually required to

meet SLAs. Durability means the data objects that an

application has stored into the system are not lost

due to machine failures (e.g., disk failure).

Data loss caused by machine failures typically affects

data durability. Machine failures usually can be

categorized into correlated machine failures and

non-correlated machine failures. Correlated machine

failures refer to the events in which multiple nodes

(i.e., servers) fail concurrently due to the common

failure causes (e.g., cluster power outages, Denial-of-

Service attacks), and this type of failures often occur

in large-scale storage systems Significant data loss is

caused by correlated machine failures which has

been documented by Yahoo LinkedIn and Facebook.

Non-correlated machine failures refer to the events

in which nodes fail individually (e.g., individual disk

failure). Usually, non-correlated machine failures are

caused by factors such as different hardware/software

compositions and configurations and varying

network access abilities.

To enhance data durability, data replication is

commonly used in cloud storage systems. Due to

http://ijsrcseit.com/

Volume 3, Issue 4 | March-April-2018 | http:// ijsrcseit.com

 427

highly skewed data popularity distributions, popular

data with considerably higher request frequency

(referred to as hot data) [18] could generate heavy

load on some nodes, which may result in data

unavailability at a time. Availability means that the

requested data objects will be able to be returned to

users. Actually, much of the data stored in a cloud

system is rarely read (commonly referred to as cold

data). Replicas of cold data waste the storage resource

and generate considerable storage cost and

bandwidth cost (for data updates, data requests and

failure recovery) that outweigh their effectiveness on

enhancing data durability. Thus, it is important to

compress and deduplicate unpopular data and store

them in low-cost storage medium.

Random replication has been widely used in cloud

storage systems Cloud storage systems, such as

Hadoop Distributed File System (HDFS) [14], Google

File System (GFS) and Windows Azure use random

replication to replicate their data in three servers

randomly selected from different racks to prevent

data loss in a single cluster. However, the three-way

random replication cannot well handle correlated

machine failures because data loss occurs if any

combination of three nodes fail simultaneously. To

handle this problem, Copy set Replication and Tiered

Replication have been proposed. However, both

methods do not try to leverage data popularity to

substantially reduce storage cost or bandwidth cost

caused by replication.

To address the above issues, we aim to design a cost

effective replication scheme that can achieve high

data durability and availability while reducing

storage cost and bandwidth cost caused by

replication. To achieve our goal, we propose a

popularity-aware multi-failure resilient and cost-

effective replication scheme (PMCR), which has

advantages over the previous proposed replication

schemes. We summarize the contributions of this

work below.

• PMCR replicates the first two replicas of each data

chunk in primary tier, and replicates the third replica

in remote backup tier. The three replicas of each data

chunk are stored in one Copy set, which can handle

correlated failures. As a result, PMCR can handle

both correlated and independent failures.

• PMCR classifies data into hot data, warm data and

cold data based on data popularity. It compresses the

third replicas of warm data and cold data in the

backup tier. For read-intensive data, PMCR uses the

Similar Compression (SC), which lever-ages the

similarities among replica chunks and removes

redundant replica chunks; for write-intensive data,

PMCR uses the Delta Compression (DC), which

records the differences of similar data objects and

between sequential data updates. As a result, PMCR

significantly reduces the storage cost and bandwidth

cost caused by replication without compromising

data durability and availability, as well as data

request delay greatly.

• To further reduce the storage and bandwidth costs

caused by replication, PMCR enhances SC by

eliminating the redundant chunks between different

data objects (rather than only within one data object)

and enhances DC by recording the differences

between different data objects (rather than only the

difference between sequential updates).

• We have conducted extensive trace-driven

experiments to compare PMCR with other state-of-

the-art replication schemes. The results show PMCR

achieves high data durability, low data loss

probability, storage and bandwidth cost.

II. PROPOSED SYSTEM

We propose a heuristic solution, called coordinated

data allocation and reservation method It determines

the data allocation first (that proactively increase the

reservation benefit) and then determines the

resource reservation schedule based upon the data

allocation schedule. To maximize the reservation

Volume%203,%20Issue%204%20|%20March-April-2018%20
http://www.ijsrcseit.com/

Volume 3, Issue 4 | March-April-2018 | http:// ijsrcseit.com

 428

benefit, as shown in Figure 1, ES3 can use its GA-

based data allocation adjustment method to improve

the data allocation schedule before determining the

resource reservation schedule.

Figure 1. Sequence of scheduling.

Coordinated Data Allocation and Resource

Reservation:-

First, we introduce how to find the optimal

reservation amount on each datacenter that

maximizes the reservation benefit given a data

allocation schedule.

Figure 2. Unbalanced and optimal data allocation.

GA-based Data Allocation Adjustment:-

If the allocated Get/Put rates vary over time largely

(i.e., the rates exceed and drop below the reserved

rates frequently), then the reservation saving is small

according to Equation. For example, Figure shows a

data allocation schedule. Then, both R g dpj = 100

and R g dpj = 200 reduce reservation benefit at a

billing period. We propose the GA-based data

allocation adjustment method to make the reserved

amount approximately equal to the actual usage as

shown in Figure 3(b).

As shown in Figure 3, this method regards each data

allocation schedule, represented by (dl ∈ D), as a

genome string, where {dp1, ..., dpβ} (denoted by Gdl)

is the set of datacenters that store dl . it generates the

data allocation schedule with the lowest total cost

(named as global optimal schedule). It also generates

the data allocation schedules with the lowest Storage

cost, lowest Get cost and lowest Put cost (named as

local optimal schedules) by assuming all data items as

Storage-, Get- and Put-intensive, respectively.

Figure 3. GA-based data allocation adjustment.

COST EFFICIENT AND SLO GUARANTEE

ENHANCEMENTS:

1) Dynamic Request Redirection:

ES3 master predicts the Get load of each storage

datacenter dpj at the initial time of tk (Atk), which is

used to calculate the data allocation schedule. If the

actual number of Gets is larger or smaller than Atk ,

then the schedule may not reach the goal of SLO

guarantee and minimum cost. There may be a

request burst due to a big event, which leads to an

expensive resource usage under current request

allocation among storage datacenters. Sudden request

silence may lead to a waste of reserved usage. The

Get operation only needs to be resolved by one of β

replicas. Therefore, we can redirect the burst Gets on

a datacenter that uses up its reservation to a replica

in a datacenter whose reservation is underutilized in

order to save cost. This redirection can also be

conducted whenever a datacenter overload or failure

is detected.

2) Grouped Gets for Cost Minimization:

To fetch all data objects of a webpage, many Get

requests are generated; each get fetching one data

object. In cloud storage, each Get has a size

limitation (denoted by ug) such as the 4kB specified

in Amazon DynamoDBFor a Get gi from a user, the

actual number of Gets considered by the cloud

provider in cost calculation is equal to dsgi /uge,

where sgi is the requested data size of Get gi . That is,

if the Get size is larger than the size limitation, the

Volume%203,%20Issue%204%20|%20March-April-2018%20
http://www.ijsrcseit.com/

Volume 3, Issue 4 | March-April-2018 | http:// ijsrcseit.com

 429

Get is considered as multiple Gets by the cloud

provider when deciding the charging amount.

The detailed procedure of coefficient-based data

grouping method is shown in Algorithm 2. To group

data objects, we sort all single data objects in the

descending order of their levels in the dependency

tree into a list L (Line 1). We loop all data objects to

combine each object into an existing grouped data

object or form an individual grouped data object

(Lines 2-7). For each data object oi ∈ L (Line 2), we

loop each of all data objects inside another list L 0 ,

which initially is empty, and calculate the grouping

benefit. For the data object oj with the largest

grouping benefit Boi,oj (Line 3), if Boi,oj > 0, we

group oi into grouped data object oj (Lines 4-5);

otherwise, we directly insert oi into L 0 as a grouped

data object with a single object (Lines 6-7). After

looping all data objects inside L, L 0 includes the

grouped data objects that can save Get cost. For

newly added data objects, we first insert them into L

and insert all current grouped data objects into L 0 ,

and then each new data object is grouped into an

existing grouped data object or form a new grouped

data object according to the procedure in Lines 2-7.

This algorithm is conducted before the real data

allocation conduction, so that the objects in a

grouped data object are stored as a file unit for

Get/Puts.

3) Lazy Update for Cost-Efficient Puts:-

a) Put Aggregation:-

Eventual consistency means that if no new updates

are made to a given data item, eventually all accesses

to that data item will return the last updated value.

Each Put of a data item needs to be propagated to all

of its replicas for consistency maintenance. We

notice that for eventual consistency, the propagation

of updates on rarely used replicas can be postponed,

which can be leveraged to save Put cost. For example,

adding an advertisement to a webpage only needs

eventual consistency and it does not need an instant

update. Similar to reading a grouped data object, we

can aggregate sequential writes into one Put to

propagate to all rarely used replicas. Recall that for

data item dl of customer datacenter dci , a storage

datacenter dpj storing dl always serves Gets from dci

targeting dl and β replicas of dl are stored in other

storage datacenters for data availability. We call dl in

datacenter dpj the master replica of data dl for

customer datacenter dci and call other replicas slave

replicas of data dl for dci .

b) Replica Deactivation:-

Recall that slave replicas of customer datacenter dci

usually do not serve its Get requests and they are

created mainly to increase the data availability. The

slave replicas introduce Storage cost and Put cost.

Only when the Get workload from dci is high and

the storage datacenters of master replicas cannot

provide SLO-guaranteed service, the Get requests

will be forwarded to datacenters hosting the slave

replicas of the requested data. Therefore, when the

request rate of Gets from dci towards data item dl

drops below a threshold Tr (i.e., when the slave

replicas are unlikely to be used), in order to save Put

cost on the slave replicas, we can deactivate the slave

replicas of dl from storage datacenters. When the

request rate of Gets towards dl from dci increases

beyond Tr, the slave replicas are dynamically created

by transferring the updated replicas of dl from the

datacenters containing them.

4) Concurrent Requests for Rigid Get SLO

Guarantee:-

Within each billing period, the data allocation of a

customer is stable. However, the customer may

Volume%203,%20Issue%204%20|%20March-April-2018%20
http://www.ijsrcseit.com/

Volume 3, Issue 4 | March-April-2018 | http:// ijsrcseit.com

 430

require a more rigid Get SLO (low tail latency SLO)

during this billing period with a smaller (dl) or L g dl .

If the Get SLO of dl is too rigid for the storage

datacenter of the main replica to handle, we can

concurrently submit multiple Get requests to

different replicas including the master and slave

replicas. This way, although some of the datacenters

cannot supply a Get SLO guarantee service, there can

be a datacenter among them responding the request

with the rigid SLO guarantee. Though this method

introduces additional Get cost due to more Get

requests, it avoids the need to conduct data

reallocation again, so that it saves the replica

Transfer cost and does not waste the reserved

Get/Put cost for datacenters currently storing dl .

Intuitively, if we transmit a Get request targeting

data dl to all β datacenters with its replica, we can get

low response latency with a high probability.

However, it may introduce unnecessary Get costs,

since a combination of part of the datacenters may

already supply a Get SLO guaranteed service. The

problem to find such a combination with Get SLO

guarantee and Get cost minimization can be easily

reduced to the knapsack problem, which is NP-hard

[16]. Since β is usually small, we can enumerate all

combinations that satisfy the rigid Get SLO and find

the one with the minimum cost. To efficiently find

the combination, we introduce a greedy heuristic

algorithm. Unlike the master replicas of dl , the Gets

towards its slave replicas are not considered in

deciding the Get reservation of their datacenters.

Then, the Get cost is calculated based on the pay-as-

you-go policy Thus, to minimize the additional Get

cost introduced by concurrent requests, we sort all

slave replica datacenters of dl in ascending order of

the Get unit cost. Then, we sequentially check each

slave replica datacenter dpj in the list. If the

additional Get workload on dpj does not make its

total Get workload exceed its Get capacity, we add

dpj into the combination C. This process continues

until the combination can satisfy the rigid Get SLO

guarantee, that is,

:

III. CONCLUSION

In this paper, we tend to propose a multi-cloud

Economical and SLO-guaranteed cloud Storage

Service (ES3) for a cloud broker over multiple CSPs

that gives SLO guarantee and value reduction even

beneath the Get rate variation. ES3ismore

advantageous than previous strategies therein it fully

utilizes completely different rating policies and

considers request rate variance in minimizing the

payment value. ES3 incorporates a knowledge

allocation and reservation technique and a GA-based

knowledge allocation adjustment technique to ensure

the SLO and minimize the payment value. ES3also

incorporates many methods to reinforce its value

economical and SLO guarantee performance. Our

trace-driven experiments on a supercomputing

cluster and real completely different CSPs show the

superior performance of ES3in providing SLO

guarantee and value minimization compared with

previous systems. The Transfer value incorporates a

layer rating model and becomes additional complex,

and CSP give different unit costs from a supply

storage datacenter to alternative datacenters

happiness to CSPs or at different locations. In our

future work, we'll study the price reduction down

side of transferring replicas of knowledge things to

completely different storage data centers whenever a

replacement knowledge allocation schedule is

generated.

IV. REFERENCES

[1]. J. Howard "Scale and performance in a

distributed file system" ACM Trans. Computer

Systems, 1988.

Volume%203,%20Issue%204%20|%20March-April-2018%20
http://www.ijsrcseit.com/

Volume 3, Issue 4 | March-April-2018 | http:// ijsrcseit.com

 431

[2]. P. Hunt, M. Konar, F. Junqueira, and B. Reed.

"Zookeeper: Waitfree coordination for

internet-scale services," In USENIX ATC, 2010.

[3]. A. Bessani, E. P. Alchieri, M. Correia, and J. S.

Fraga "DepSpace:A Byzantine fault-tolerant

coordination service," in EuroSys, 2008.

[4]. StorSimple. StorSimple.

http://www.storsimple.com/.

[5]. TwinStrata. TwinStrata.

http://www.twinstrata.com/.

[6]. Alysson Bessani, Miguel Correia, Bruno

Quaresma, Fernando Andre, and Paulo Sousa

"DEPSKY: Dependable and Secure Storage in a

Cloud-of-clouds," EuroSys 11-April- 2011.

[7]. Ricardo Mendes, Tiago Oliveira, Vinicius Cogo,

Alysson Bessani "The CHARON file system,"

[8]. Idilio Drago, Marco Mellia, Maurizio M.

Munafò, Anna Sperotto and Aiko Pras "Inside

Drop box: Understanding Personal Cloud

Storage Services," in Proceeding of IMC -12 of

ACM conference on internet measurement

conference,2012 PP.481-494.

[9]. http://www.techrepublic.com/blog/five-

apps/keep-your-data-safewith-one-of-these-

five-cloud-backup-tools/

[10]. http://www.cloudwards.net/spideroak-or-

wuala-which-is-moresecure/

[11]. Kailas Pophale, Priyanka Patil, Rahul Shelake,

Swapnil Sapkal "Seed Block Algorithm: Remote

Smart Data- Backup Technique for Cloud

Computing," International Journal of Advanced

Research in Computer and Communication

Engineering, Vol. 4, Issue 3, March 2015.

[12]. Lili Sun, Jianwei An, Yang, and Ming Zeng

"Recovery Strategies for Service Composition

in Dynamic Network," International

Conference on Cloud and Service Computing,

2011

[13]. Giuseppe Pirro, Paolo Trunfio, Domenico Talia,

Paolo Missier and Carole Goble "ERGOT: A

Semantic-based System for Service Discovery

in Distributed Infrastructures," 10th

IEEE/ACM International Conference on

Cluster, Cloud and Grid Computing, 2010.

[14]. Xi Zhou, Junshuai Shi, YingxiaoXu, Yinsheng

Li and Weiwei Sun "A backup restoration

algorithm of service composition in MANETs,"

Communication Technology ICCT 11th IEEE

International Conference, 2008, pp. 588-591.

[15]. Ms.KrutiSharma, and Prof K.R. Singh "Online

data Backup and Disaster Recovery techniques

in cloud computing: A review", JEIT, Vol.2,

Issue 5, 2012.

[16]. Eleni Palkopoulouy, Dominic A. Schupke,

Thomas Bauscherty "Recovery Time Analysis

for the Shared Backup Router Resources

(SBRR) Architecture", IEEE ICC, 2011.

[17]. http://searchcloudstorage.techtarget.com/defini

tion/cloud-storage.

[18]. M. Rosenblum and J. K. Ousterhout."The

Design and Implementation of a Log-

Structured File System," ACM Transactions on

Computer Systems (TOCS), 1992.

[19]. Alysson Bessani, Ricardo Mendes, Tiago

Oliveira, Nuno Neves, Miguel Correia, Marcelo

Pasin, and Paulo Verissimo "SCFS: A Shared

Cloud-backed File System, " in Proceedings of

the USENIX ATC on USENIX Annual

Technical Conference 19&20-June -2014.

[20]. P. Mahajan, S. Setty, S. Lee, A. Clement, L.

Alvisi, M. Dahlin, and M. Walfish "Depot:

Cloud Storage with Minimal Trust," In

Proceedings of the 9th USENIX Conference on

Operating Systems Design and Implementation

(OSDI), Oct. 2010.

Volume%203,%20Issue%204%20|%20March-April-2018%20
http://www.ijsrcseit.com/

