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ABSTRACT 
 

Due to the increase of the advantages of the cloud computing many enterprisers started adopting the cloud 

servers. There are so many cloud service providers in the cloud system. The enterprisers will choose the cloud 

platform based on their satisafaction.the satisfaction of the customer mainly depends on the two things firstly 

cloud configuration affects the quality of service which is an important factor affecting customer satisfaction. 

Secondly customer satisfaction affects the request arrival rate of a cloud service provider. it is necessary the 

clouds service brokers should provide multi cloud storage service to reduce their cost payments to the cloud 

servers. . In this paper, we propose a multi-cloud Economical and SLO-guaranteed Storage Service (ES3), which 

determines data allocation and resource reservation schedules with payment cost minimization and SLO 

guarantee. ES3 incorporates (1) a coordinated data allocation and resource reservation method, which allocates 

each data item to a datacenter and determines the resource reservation amount on datacenters by calculating all 

the pricing policies; (2) a genetic algorithm based data allocation adjustment method, to maximize the data 

reservation benefit in all data centers.. We also propose several algorithms to enhance the cost efficient and 

SLO guarantee performance of ES3 including i) dynamic request redirection, ii) grouped Gets for cost 

reduction, iii) lazy update for cost-efficient Puts, and iv) concurrent requests for rigid Get SLO guarantee. 

Keywords: Cloud Storage, SLO, Payment Cost. 

 

I. INTRODUCTION 

 

Cloud providers, such as Amazon S3, Google Cloud 

Storage (GCS) and Windows Azure offer storage as a 

service. It is important for cloud providers to reduce 

Service Level Agreement (SLA) violations to provide 

high quality of service and reduce the associated 

penalties High data durability is usually required to 

meet SLAs. Durability means the data objects that an 

application has stored into the system are not lost 

due to machine failures (e.g., disk failure). 

 

Data loss caused by machine failures typically affects 

data durability. Machine failures usually can be 

categorized into correlated machine failures and 

non-correlated machine failures. Correlated machine 

failures refer to the events in which multiple nodes 

(i.e., servers) fail concurrently due to the common 

failure causes (e.g., cluster power outages, Denial-of-

Service attacks), and this type of failures often occur 

in large-scale storage systems Significant data loss is 

caused by correlated machine failures which has 

been documented by Yahoo LinkedIn  and Facebook. 

Non-correlated machine failures refer to the events 

in which nodes fail individually (e.g., individual disk 

failure). Usually, non-correlated machine failures are 

caused by factors such as different hardware/software 

compositions and configurations and varying 

network access abilities. 

 

To enhance data durability, data replication is 

commonly used in cloud storage systems. Due to 
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highly skewed data popularity distributions, popular 

data with considerably higher request frequency 

(referred to as hot data) [18] could generate heavy 

load on some nodes, which may result in data 

unavailability at a time. Availability means that the 

requested data objects will be able to be returned to 

users. Actually, much of the data stored in a cloud 

system is rarely read (commonly referred to as cold 

data). Replicas of cold data waste the storage resource 

and generate considerable storage cost and 

bandwidth cost (for data updates, data requests and 

failure recovery) that outweigh their effectiveness on 

enhancing data durability. Thus, it is important to 

compress and deduplicate unpopular data and store 

them in low-cost storage medium. 

 

Random replication has been widely used in cloud 

storage systems Cloud storage systems, such as 

Hadoop Distributed File System (HDFS) [14], Google 

File System (GFS) and Windows Azure use random 

replication to replicate their data in three servers 

randomly selected from different racks to prevent 

data loss in a single cluster. However, the three-way 

random replication cannot well handle correlated 

machine failures because data loss occurs if any 

combination of three nodes fail simultaneously. To 

handle this problem, Copy set Replication and Tiered 

Replication have been proposed. However, both 

methods do not try to leverage data popularity to 

substantially reduce storage cost or bandwidth cost 

caused by replication. 

 

To address the above issues, we aim to design a cost 

effective replication scheme that can achieve high 

data durability and availability while reducing 

storage cost and bandwidth cost caused by 

replication. To achieve our goal, we propose a 

popularity-aware multi-failure resilient and cost-

effective replication scheme (PMCR), which has 

advantages over the previous proposed replication 

schemes. We summarize the contributions of this 

work below. 

• PMCR replicates the first two replicas of each data 

chunk in primary tier, and replicates the third replica 

in remote backup tier. The three replicas of each data 

chunk are stored in one Copy set, which can handle 

correlated failures. As a result, PMCR can handle 

both correlated and independent failures.  

• PMCR classifies data into hot data, warm data and 

cold data based on data popularity. It compresses the 

third replicas of warm data and cold data in the 

backup tier. For read-intensive data, PMCR uses the 

Similar Compression (SC), which lever-ages the 

similarities among replica chunks and removes 

redundant replica chunks; for write-intensive data, 

PMCR uses the Delta Compression (DC), which 

records the differences of similar data objects and 

between sequential data updates. As a result, PMCR 

significantly reduces the storage cost and bandwidth 

cost caused by replication without compromising 

data durability and availability, as well as data 

request delay greatly. 

 

• To further reduce the storage and bandwidth costs 

caused by replication, PMCR enhances SC by 

eliminating the redundant chunks between different 

data objects (rather than only within one data object) 

and enhances DC by recording the differences 

between different data objects (rather than only the 

difference between sequential updates).  

 

• We have conducted extensive trace-driven 

experiments to compare PMCR with other state-of-

the-art replication schemes. The results show PMCR 

achieves high data durability, low data loss 

probability, storage and bandwidth cost. 

 

II. PROPOSED SYSTEM 

 

We propose a heuristic solution, called coordinated 

data allocation and reservation method It determines 

the data allocation first (that proactively increase the 

reservation benefit) and then determines the 

resource reservation schedule based upon the data 

allocation schedule. To maximize the reservation 
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benefit, as shown in Figure 1, ES3 can use its GA-

based data allocation adjustment method to improve 

the data allocation schedule before determining the 

resource reservation schedule. 

 
Figure 1. Sequence of scheduling. 

 

Coordinated Data Allocation and Resource 

Reservation:- 

First, we introduce how to find the optimal 

reservation amount on each datacenter that 

maximizes the reservation benefit given a data 

allocation schedule. 

 
Figure 2. Unbalanced and optimal data allocation. 

 

GA-based Data Allocation Adjustment:- 

If the allocated Get/Put rates vary over time largely 

(i.e., the rates exceed and drop below the reserved 

rates frequently), then the reservation saving is small 

according to Equation. For example, Figure shows a 

data allocation schedule. Then, both R g dpj = 100 

and R g dpj = 200 reduce reservation benefit at a 

billing period. We propose the GA-based data 

allocation adjustment method to make the reserved 

amount approximately equal to the actual usage as 

shown in Figure 3(b).  

 

As shown in Figure 3, this method regards each data 

allocation schedule, represented by (dl ∈ D), as a 

genome string, where {dp1, ..., dpβ} (denoted by Gdl ) 

is the set of datacenters that store dl . it generates the 

data allocation schedule with the lowest total cost 

(named as global optimal schedule). It also generates 

the data allocation schedules with the lowest Storage 

cost, lowest Get cost and lowest Put cost (named as 

local optimal schedules) by assuming all data items as 

Storage-, Get- and Put-intensive, respectively. 

 
Figure 3. GA-based data allocation adjustment. 

 

COST EFFICIENT AND SLO GUARANTEE 

ENHANCEMENTS: 

 

1) Dynamic Request Redirection: 

ES3 master predicts the Get load of each storage 

datacenter dpj at the initial time of tk (Atk), which is 

used to calculate the data allocation schedule. If the 

actual number of Gets is larger or smaller than Atk , 

then the schedule may not reach the goal of SLO 

guarantee and minimum cost. There may be a 

request burst due to a big event, which leads to an 

expensive resource usage under current request 

allocation among storage datacenters. Sudden request 

silence may lead to a waste of reserved usage. The 

Get operation only needs to be resolved by one of β 

replicas. Therefore, we can redirect the burst Gets on 

a datacenter that uses up its reservation to a replica 

in a datacenter whose reservation is underutilized in 

order to save cost. This redirection can also be 

conducted whenever a datacenter overload or failure 

is detected. 

 

2) Grouped Gets for Cost Minimization: 

To fetch all data objects of a webpage, many Get 

requests are generated; each get fetching one data 

object. In cloud storage, each Get has a size 

limitation (denoted by ug) such as the 4kB specified 

in Amazon DynamoDBFor a Get gi from a user, the 

actual number of Gets considered by the cloud 

provider in cost calculation is equal to dsgi /uge, 

where sgi is the requested data size of Get gi . That is, 

if the Get size is larger than the size limitation, the 
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Get is considered as multiple Gets by the cloud 

provider when deciding the charging amount. 

 
 

The detailed procedure of coefficient-based data 

grouping method is shown in Algorithm 2. To group 

data objects, we sort all single data objects in the 

descending order of their levels in the dependency 

tree into a list L (Line 1). We loop all data objects to 

combine each object into an existing grouped data 

object or form an individual grouped data object 

(Lines 2-7). For each data object oi ∈ L (Line 2), we 

loop each of all data objects inside another list L 0 , 

which initially is empty, and calculate the grouping 

benefit. For the data object oj with the largest 

grouping benefit Boi,oj (Line 3), if Boi,oj > 0, we 

group oi into grouped data object oj (Lines 4-5); 

otherwise, we directly insert oi into L 0 as a grouped 

data object with a single object (Lines 6-7). After 

looping all data objects inside L, L 0 includes the 

grouped data objects that can save Get cost. For 

newly added data objects, we first insert them into L 

and insert all current grouped data objects into L 0 , 

and then each new data object is grouped into an 

existing grouped data object or form a new grouped 

data object according to the procedure in Lines 2-7. 

This algorithm is conducted before the real data 

allocation conduction, so that the objects in a 

grouped data object are stored as a file unit for 

Get/Puts. 

 

3) Lazy Update for Cost-Efficient Puts:- 

a) Put Aggregation:- 

Eventual consistency means that if no new updates 

are made to a given data item, eventually all accesses 

to that data item will return the last updated value. 

Each Put of a data item needs to be propagated to all 

of its replicas for consistency maintenance. We 

notice that for eventual consistency, the propagation 

of updates on rarely used replicas can be postponed, 

which can be leveraged to save Put cost. For example, 

adding an advertisement to a webpage only needs 

eventual consistency and it does not need an instant 

update. Similar to reading a grouped data object, we 

can aggregate sequential writes into one Put to 

propagate to all rarely used replicas. Recall that for 

data item dl of customer datacenter dci , a storage 

datacenter dpj storing dl always serves Gets from dci 

targeting dl and β replicas of dl are stored in other 

storage datacenters for data availability. We call dl in 

datacenter dpj the master replica of data dl for 

customer datacenter dci and call other replicas slave 

replicas of data dl for dci . 

 

b) Replica Deactivation:- 

Recall that slave replicas of customer datacenter dci 

usually do not serve its Get requests and they are 

created mainly to increase the data availability. The 

slave replicas introduce Storage cost and Put cost. 

Only when the Get workload from dci is high and 

the storage datacenters of master replicas cannot 

provide SLO-guaranteed service, the Get requests 

will be forwarded to datacenters hosting the slave 

replicas of the requested data. Therefore, when the 

request rate of Gets from dci towards data item dl 

drops below a threshold Tr (i.e., when the slave 

replicas are unlikely to be used), in order to save Put 

cost on the slave replicas, we can deactivate the slave 

replicas of dl from storage datacenters. When the 

request rate of Gets towards dl from dci increases 

beyond Tr, the slave replicas are dynamically created 

by transferring the updated replicas of dl from the 

datacenters containing them. 

 

4) Concurrent Requests for Rigid Get SLO 

Guarantee:- 

Within each billing period, the data allocation of a 

customer is stable. However, the customer may 
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require a more rigid Get SLO (low tail latency SLO) 

during this billing period with a smaller (dl) or L g dl . 

If the Get SLO of dl is too rigid for the storage 

datacenter of the main replica to handle, we can 

concurrently submit multiple Get requests to 

different replicas including the master and slave 

replicas. This way, although some of the datacenters 

cannot supply a Get SLO guarantee service, there can 

be a datacenter among them responding the request 

with the rigid SLO guarantee. Though this method 

introduces additional Get cost due to more Get 

requests, it avoids the need to conduct data 

reallocation again, so that it saves the replica 

Transfer cost and does not waste the reserved 

Get/Put cost for datacenters currently storing dl . 

Intuitively, if we transmit a Get request targeting 

data dl to all β datacenters with its replica, we can get 

low response latency with a high probability. 

However, it may introduce unnecessary Get costs, 

since a combination of part of the datacenters may 

already supply a Get SLO guaranteed service. The 

problem to find such a combination with Get SLO 

guarantee and Get cost minimization can be easily 

reduced to the knapsack problem, which is NP-hard 

[16]. Since β is usually small, we can enumerate all 

combinations that satisfy the rigid Get SLO and find 

the one with the minimum cost. To efficiently find 

the combination, we introduce a greedy heuristic 

algorithm. Unlike the master replicas of dl , the Gets 

towards its slave replicas are not considered in 

deciding the Get reservation of their datacenters. 

Then, the Get cost is calculated based on the pay-as-

you-go policy Thus, to minimize the additional Get 

cost introduced by concurrent requests, we sort all 

slave replica datacenters of dl in ascending order of 

the Get unit cost. Then, we sequentially check each 

slave replica datacenter dpj in the list. If the 

additional Get workload on dpj does not make its 

total Get workload exceed its Get capacity, we add 

dpj into the combination C. This process continues 

until the combination can satisfy the rigid Get SLO 

guarantee, that is, 

:  

III. CONCLUSION 

 

In this paper, we tend to propose a multi-cloud 

Economical and SLO-guaranteed cloud Storage 

Service (ES3) for a cloud broker over multiple CSPs 

that gives SLO guarantee and value reduction even 

beneath the Get rate variation. ES3ismore 

advantageous than previous strategies therein it fully 

utilizes completely different rating policies and 

considers request rate variance in minimizing the 

payment value. ES3 incorporates a knowledge 

allocation and reservation technique and a GA-based 

knowledge allocation adjustment technique to ensure 

the SLO and minimize the payment value. ES3also 

incorporates many methods to reinforce its value 

economical and SLO guarantee performance. Our 

trace-driven experiments on a supercomputing 

cluster and real completely different CSPs show the 

superior performance of ES3in providing SLO 

guarantee and value minimization compared with 

previous systems. The Transfer value incorporates a 

layer rating model and becomes additional complex, 

and CSP give different unit costs from a supply 

storage datacenter to alternative datacenters 

happiness to CSPs or at different locations. In our 

future work, we'll study the price reduction down 

side of transferring replicas of knowledge things to 

completely different storage data centers whenever a 

replacement knowledge allocation schedule is 

generated. 
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