
CSEIT1833425 | Received : 15 March 2018 | Accepted : 25 March 2018 | March-April-2018 [(3) 4 : 511-516]

International Journal of Scientific Research in Computer Science, Engineering and Information Technology

© 2018 IJSRCSEIT | Volume 3 | Issue 4 | ISSN : 2456-3307

511

Software Quality measurement with Metamorphic Testing
M. SatishKumar1, S. Surekha2, M. Keerthi2

1Assoc. Professor Department of computer Applications, SVCET, Chittoor, Andhra Pradesh, India
2PG scholar Department of computer Applications, SVCET, Chittoor, Andhra Pradesh, India

ABSTRACT

Web search engines are composed by thousands of query processing nodes, i.e., servers dedicated to process

user queries. Metamorphic testing may be a testing technique which will be used to verify the useful

correctness of software system within the absence of an ideal oracle. This paper extends metamorphic testing

into a user-oriented approach to software system verification, validation, and quality assessment, and conducts

large scale empirical studies with four major net search engines: Google, Bing, Chinese Bing, and Baidu. These

search engines are very tough to check and assess using conventional approaches owing to the lack of an

objective and generally recognized oracle. The results are useful for each search engine developers and users,

and demonstrate that our approach will effectively alleviate the oracle drawback and challenges close a lack of

specifications when verifying, validating, and evaluating giant and complex software systems.

Keywords: Metamorphic testing, Google, Bing, Chinese Bing.

I. INTRODUCTION

Computer-based application has been widely used all

over the world. Hence, the roles of software systems

have been increased exponentially. This causes, at

the same time, the increasing reports of software

faults. To guarantee the quality of software used is

handled by software quality assurance process. It has

become one of the most important areas in the

software industry as well as in the academic sectors.

Software testing, an important approach in software

quality assurance, is widely reflected as a critical

activity and now is one of main research focus in

software engineering (Hailpern et al., 2002). One

objective of software testing is to detect as quickly as

possible, as many software faults as possible (Myers,

2004).

Software testing is one of phase in software

engineering process that has a very improtant role to

determine the quality of software under test. The

general steps in software testing is generating test

cases, selecting appropriate set of test cases based on

certain criteria, executing them, and checking the

outputs against a test oracle to determine whether

any failures detected or not. A test oracle is a

mechanism to check whether the output of executing

a program under testing using a test case is according

to the expected output or not. In other words, it is

used to verify whether the progam has passed the test

or not (Hierons, 2012). The presence of oracle testing

is very important in conducting testing. However, in

most situation, oracle testing is impractical to be

found or too expensive which is known as an oracle

problem (Manolache et al, 2001). Chen et al designed

a new testing method, called Metamorphic Testing

(MT) which was aimed to alleviate the oracle

problem (Chen et al, 1998). This method is

approached based on the property of program under

test.

Based on the properties, tester is expected to generate

some Metamorphic Relations that mainly have two

functions: (i) to generate new test cases from the

http://ijsrcseit.com/

Volume 3, Issue 4 | March-April-2018 | http:// ijsrcseit.com

 512

original test cases, and (ii) to verify whether test

passes or fails based on the relations of the inputs and

or outputs of original test cases and new test cases.

This paper aims to introduce the use of MT in a case

study of matrix multiplication. This case is chosen as

matrix multiplication program can face oracle

problem particularly when the size of matrices are

large. However the case is quite common and widely

used so that it will be easier to understand in

explaining the concept used in MT.

II. METAMORPHIC TESTING

Metamorphic Testing (MT) is property bases testing

which aims to find some useful relations (called

Metamorphic Relations) to alleviate the oracle

problems (Chen et al, 2003). As explained by Asrfai

et al. (Asrafi et al, 2011), a metamorphic relation (MR)

is an expected relation of the program under test

which should be valid over a set of distinct input data

and their corresponding output for multiple

executions. Figure-1 sumarizes the relations in MT

which involve source and follow-up inputs and

outputs.MT checks the validity of MRs by multiply

executing of the target program. The steps of MT are

as folllowings: (i) determining specific properties of

the SUT to construct MRs, (ii) generating source test

case by some traditional testing techniques (such as

random testing), (iii) generating follow-up test cases

based on source test cases according to the MRs, (iv)

executing the test cases, and (v) verifing the outputs

of the test cases against MRs. If the outputs of the

source and follow-up test cases do not match their

relations in corresponding MR, then the test fails.

Asrafi et al (Asrafi et al, 2011) presented a simple

example of MT in a sorting program as follows. The

program sorts a set of integers in the ascending order.

Suppose S is a set of numbers to be sorted. If the set S

is rearranged in reverse order the output of the

sorting program will still remain same. This MR can

be denoted by Sort(S) = Sort (reverse(S)). Suppose S =

{35, 15, 32, 25}, Sort(S) will yield {15, 25, 32, 35}.We

reverse the set S to generate the follow-up test case

reverse(S) = {25, 32, 15, 35}. If Sort (reverse(S)) {15,

25, 32, 35}, we can say a fault is detected. MT has

been widely used in solving many oracle problems

(Barus et al, 2009; Chen et al, 1998; Chen et al, 2009;

Chen et al, 2004).

Proposed system:-

To apply MT to the automatic quality assessment of

search engines, without the need for an oracle or

human assessor, two groups of MRs were used: The

“No Missing Web Page” group assesses the search

engines’ capability in retrieving appropriate Web

pages to meet the users’ needs; and the “Consistent

Ranking” group assesses the ranking quality of the

search results. This section provides a brief

description of these MRs.

Metamorphic Relation: MPSite

MPSite belongs to the “No Missing Web Page” group

of MRs, which assess the search engine’s Web page

retrieval capability. MPSite is focused on the search

engine’s reliability when retrieving Web pages that

contain an exact word or phrase. It therefore assesses

the keyword based search feature. MPSite is

described as follows: Let A be a source query for

which the search engine returns a non-empty list of

results (called the source response), namely, (p1,

p2, . . . , pn), where 0 < n and pi is a Web page from

domain di , 1 ≤ i ≤ n. To enhance accuracy and

validity of our approach, in MPSite we only consider

situations where 0 < n ≤ 20 so that we can avoid the

inaccuracy associated with large result sets (such as a

large list being truncated by the search engine to

improve response time).

Volume%203,%20Issue%204%20|%20March-April-2018%20
http://www.ijsrcseit.com/

Volume 3, Issue 4 | March-April-2018 | http:// ijsrcseit.com

 513

For the source response (p1, p2, . . . , pn), n follow-up

queries are constructed as follows: The ith follow-up

query Bi (1 ≤ i ≤ n) is constructed in such a way that

Bi is identical to A except that Bi includes an

additional criterion which requires that all results be

retrieved from domain di . Let FRi (a follow-up

response) be the list of Web pages returned by the

search engine for query Bi . The metamorphic

relation MPSite requires that pi ∈ FRi (note that

there is no requirement on the ranking of pi in FRi).

For example, let us test Google by issuing the

following source query:

Figure 2. Excerpts from Google help page.

"side effect of antibiotics in babies" where the

quotation marks are part of the query. Google

returned a total of 7 Web pages. Without loss of

generality, let us consider the top result, which is:

This Web page is from the .uk domain. 1 The

metamorphic relation MPSite enables the

construction of the following follow-up query: ["side

effect of antibiotics in babies" site:uk], 2 where “site:”

is a Google search operator that specifies domains

(see Figure 2 (lower)). Obviously, the previously

returned top result (http://www.dailymail.co.uk/. . .)

meets this search criterion, is indexed in Google

database, and therefore should still be returned by

Google for this follow-up query. In this example,

Google returned a total of 7 Web pages for the source

query. Therefore, 7 followup queries are constructed

by referring to MPSite. 3 Using MPSite, even if the

assessor is unable to verify or evaluate each

individual response, he/she can still verify the logical

consistency relationship among multiple responses.

Here, the basic approach is to use the search engine’s

source response to check its follow-up response.

Figure 3 shows a failure detected using MPSite,All

MRs identified in this paper were implemented into

a testing tool and, hence, the testing and assessment

process is automated.

Metamorphic Relation: MPTitle:-

For many search engines including those investigated

in the present paper, if the words are not enclosed by

double quotation marks, synonyms will be employed

automatically. For instance, Google specifies that

“Google employs synonyms automatically, so that it

finds pages that mention, for example, childcare for

the query [child care] (with a space), or California

history for the query [ca history].” Synonyms are

employed because the search engines attempt to

return Web pages that best meet users’ information

needs. In other words, the search engines attempt to

imitate the behavior of a human operator, to which

end, correct understanding of the Web pages and of

the user intent are key. To test a search engine’s

information retrieval capability in situations where

synonyms may be used for semantic search, a good

strategy is to construct a test query q that best

characterizes a target Web page p (the words in q

may or may not directly appear in p). Furthermore, p

must have been indexed in the search engine’s

database. The search engine can be tested on q. If p is

not retrieved, then the user’s perception of the

search quality will be poor. A research question is:

How can such q’s and p’s be identified in a fully

automatic fashion for search engine assessment? The

metamorphic relation MPTitle is designed to meet

this challenge.

Volume%203,%20Issue%204%20|%20March-April-2018%20
http://www.ijsrcseit.com/

Volume 3, Issue 4 | March-April-2018 | http:// ijsrcseit.com

 514

Figure 3. A Google failure detected using MPSite.

 The top result in (a) cannot be retrieved in (b).

Metamorphic Relation: MPReverseJD:-

The third MR of the “No Missing Web Page” group is

MPReverseJD. Its design was inspired by a search

engine assessment technique informally used in

industry, which is based on the rationale that a good

search engine should return similar results for similar

queries. For instance, although a search for [today’s

movies in Redmond] and a search for [Redmond

movies today] (without double quotes) may return

different results, the two result sets should share a

large intersection if the search engine is robust to the

nonessential differences between these two queries. 5

This idea was also employed by Imielinski and

Signorini to test semantic search engines using

semantically equivalent queries [29]. The MR

MPReverseJD is designed as follows: The source

query A is defined to be a query for which the search

engine returns a non-empty list of up to 20 results. A

is further defined to be the conjunction of up to 4

terms, namely:

where Ai (i=1, 2, 3, 4) is a name enclosed by double

quotation marks. Terms A3 and A4 are optional: A3

is applied only when the conjunction of A1 and A2

has more than 20 results, and A4 is applied only

when the conjunction of A1, A2, and A3 has more

than 20 results. If the conjunction of all 4 terms still

has more than 20 results, all these terms will be

discarded and a new query will be formed. The

following is an example of the source query A:

["Vincent Van Gogh" AND "Elvis Presley" AND

"Albert Einstein" AND "Plato”]. In this example,

A1="Vincent Van Gogh," A2="Elvis Presley,"

A3="Albert Einstein," and A4="Plato." The follow-up

query B is constructed by reversing the order of A’s

terms: ["Plato" AND "Albert Einstein" AND "Elvis

Presley" AND "Vincent Van Gogh."] MPReverseJD

states that a stable search engine should return

similar results for the source query A and followup

query B.

In other words, the two result sets should have a

large intersection – we refer to this kind of quality as

stability. This requirement is reasonable especially

given that the result set of A is very small (containing

no more than 20 results) and that the source and

follow-up queries have similar semantic meanings –

this is because the queries only consist of names

whose orders do not change the meaning of the

queries. To measure the similarity of the two result

sets, we use the metric Jaccard similarity coefficient

(or Jaccard coefficient for short), defined as |X|/|Y |,

where X = source response ∩ follow-up response and

Y = source response ∪ follow-up response. The

source and follow-up responses refer to the source

and follow-up queries’ result sets, respectively.

Obviously, 0 ≤ Jaccard coefficient ≤ 1. A larger

Jaccard coefficient indicates higher similarity and,

hence, better stability. Given that the vast majority

of users would prefer stable search results, poor

stability may result in a poor user experience. (In this

paper, “user experience” refers to users’ perceived

quality of the search results.)

Volume%203,%20Issue%204%20|%20March-April-2018%20
http://www.ijsrcseit.com/

Volume 3, Issue 4 | March-April-2018 | http:// ijsrcseit.com

 515

Metamorphic Relation: SwapJD:-

The second group of MRs is named “Consistent

Ranking.” Its first MR is SwapJD, which assesses the

search engines’ ranking stability based on the

concept that a stable search engine should return

similar results for similar queries. SwapJD is

described as follows: The source query A contains

only two words (without quotation marks) and the

follow-up query B is constructed by swapping the

two words. A stable search engine should return

similar results for A and B if these two queries have

similar meanings, regardless of their word orders.

The similarity can be measured by calculating the

Jaccard coefficient of the top x results in the two

result lists, where x can be given by the assessor. In

this research, we set x to 50, as our experience

suggests that most users are unlikely to browse

search results beyond the top 50.

Metamorphic Relation: Top1Absent:-

The Top1Absent MR focuses on the ranking quality

of the very first result presented in the search results

screen. This top result can be considered as the most

important one among all search results. According to

Imielinski and Signorini [29], more than 65% of

search clicks are done on the first result. Top1Absent

is designed by extending the idea of MPSite, as

described below: The source query A is a word

randomly selected from an English dictionary

(excluding common words such as “is” and “of”) and

is surrounded by double quotes. Let p1 be the top

result, that is, p1 is the first listed Web page returned

by the search engine for query A. The follow-up

query B still uses A as the query term, but restricts

the search to p1’s domain only. The expected

relationship is that p1 should still appear in the

search results for B.

III. CONCLUSION

Metamorphic testing (MT) was at the start proposed

as a verification technique, wherever metamorphic

relations (MRs) were identified by referring to the

target algorithmic rule to be enforced. During this

paper, we have demonstrated the practicability of

MT being a unified framework for software

verification, validation, and quality assessment. We

have a tendency to conduct a study on search engines,

where we have a tendency to known MRs from the

users’ perspective without bearing on the target

algorithms or system specifications. more generally,

this approach permits users to recognize whether or

not or not a system is suitable for their specific wants

within the absence of complete software

documentation, that is usually the case with net

services, poorly evolved software, and open source

software.

IV. REFERENCES

[1]. G. Agha. Actors: a model of concurrent

computation in distributed systems. MIT Press,

1986.

[2]. J. Aldrich, C. Chambers, and D. Notkin.

Archjava: connecting software architecture to

implementation. In Proceedings of the 24th

international conference on Software

engineering, pages 187-197. ACM Press, 2002.

[3]. J. Aldrich, V. Sazawal, C. Chambers, and D.

Notkin. Language support for connector

abstractions. In ECOOP 2003 - Object-

Oriented Programming: 17th European

Conference, volume 2743 of Lecture Notes in

Computer Science, pages 74-102. Springer-

Verlag, July 2003.

[4]. G. Arango, L. Bruneau, J. F. Cloarec, and A.

Feroldi. A tool shell for tracking design

decisions. IEEE Software, 8(2):75-83, March

1991.

[5]. The Archium website,

http://www.archium.net.

[6]. M. Babar, I. Gorton, and B. Kitchenham. A

framework for supporting architecture

knowledge and rationale management. In A. H.

Dutoit, R. McCall, I. Mistrik, and B. Paech,

editors, Rationale Management in Software

Volume%203,%20Issue%204%20|%20March-April-2018%20
http://www.ijsrcseit.com/

Volume 3, Issue 4 | March-April-2018 | http:// ijsrcseit.com

 516

Engineering, chapter 11, pages 237-254.

Springer-Verlag, March 2006.

[7]. M. A. Babar, R. C. de Boer, T. Dingsøyr, and R.

Farenhorstir. Architectural knowledge

management strategies: approaches in research

and industry. In Proceedings of the 2nd

Workshop on SHAring and Reusing

architectural Knowledge - Architecture,

rationale, and Design Intent (SHARK/ADI

2007), May 2007.

[8]. M. Bachler, S. Buckingham Shum, D. D. Roure,

D. Michaelides, and K. Page. Ontological

mediation of meeting structure:

Argumentation, annotation, and navigation. In

1st International Workshop on Hypermedia

and the Semantic Web, 2003.

[9]. E. L. A. Baniassad, G. C. Murphy, and C.

Schwanninger. Design pattern rationale graphs:

Linking design to source. In Proceedings of the

25th ICSE, pages 352-362, May 2003.

[10]. L. Bass, P. Clements, and R. Kazman. Software

architecture in practice. Addison Wesley, 1998.

[11]. L. Bass, P. Clements, and R. Kazman. Software

architecture in practice 2nd ed. Addison

Wesley, 2003.

[12]. L. Bass, P. Clements, R. L. Nord, and J. Stafford.

Capturing and using rationale for software

architecture. In A. H. Dutoit, R. McCall, I.

Mistrik, and B. Paech, editors, Rationale

Management in Software Engineering, chapter

12, pages 255-272. Springer-Verlag, March

2006.

[13]. D. Batory, J. Liu, and J. N. Sarvela. Refinements

and multi-dimensional separation of concerns.

In Proceedings of the 9th European software

engineering conference, pages 48-57. ACM

Press, 2003.

[14]. K. H. Bennett and V. T. Rajlich. Software

maintenance and evolution: a roadmap. In

Proceedings of the conference on the future of

Software engineering, pages 73-87. ACM Press,

2000.

[15]. B. W. Boehm, E. Horowitz, R. Madachy, D.

Reifer, B. K. Clark, B. Steece, A. W. Brown, S.

Chulani, and C. Abts. Software Cost Estimation

with Cocomo II. Prentice Hall, January 2000.

[16]. C. Boekhoudt. The big bang theory of ides.

Queue, 1(7):74-82, 2003.

[17]. G. Booch, J. RumBaugh, and I. Jacobson. The

unified modeling language user guide. Addison

Wesley, 1998.

[18]. J. Bosch. Superimposition: A component

adaptation technique. Information and

Software Technology, 41(5):257-273, 25 March

1999.

[19]. J. Bosch. Design & Use of Software

Architectures, Adopting and evolving a

product line approach. ACM Press/Addison

Wesley, 2000.

[20]. J. Bosch. Maturity and evolution in software

product lines: approaches, artefacts and

organization. In Proceedings of the 2nd

Software Product Line Conference (SPLC

2002), August 2002.

Author’s Profile:

M. SatishKumar M.C.A., M.Tech.,

M.phil., working as an

Assoc.professor in Sri Venkateswara

college of engineering &technology,

Chittoor, A.P.

S. Surekha received the PG degree

from SriVenkateswara college of

engineering & Technology, Chittoor,

A.P.

M. Keerthi received the PG degree

from Sri Venkateswara college of

engineering& technology ,Chittoor,

A.P.

Volume%203,%20Issue%204%20|%20March-April-2018%20
http://www.ijsrcseit.com/

