
CSEIT1833579 | Received : 15 March 2018 | Accepted : 31 March 2018 | March-April-2018 [(3) 4 : 1181-1186]

International Journal of Scientific Research in Computer Science, Engineering and Information Technology

© 2018 IJSRCSEIT | Volume 3 | Issue 4 | ISSN : 2456-3307

1181

Data Encryption Strategy with Privacy-Preserving for Big Data

in Mobile Cloud using H2Hadoop
T. Ramathulasi1, C. Samba Shiva Reddy2, K. Ashok Kumar2

1Asst.Professor, Department of Computer Applications SVCET, Chittoor, Andhra Pradesh, India
2PG Scholar, Department of Computer Applications SVCET Chittoor, Andhra Pradesh, India

ABSTRACT

Cloud Computing leverages Hadoop framework for process Big Data in parallel. Hadoop has bound limitations

that could be exploited to execute the duty efficiently. These limitations square measure principally thanks to

data section within the cluster jobs and tasks scheduling, and resource allocations in Hadoop. Economical

resource allocation remains a challenge in Cloud Computing MapReduce platforms. We propose H2Hadoop

that is an enhanced Hadoop design that reduces the computation value related to Big Data analysis. The

projected design also addresses the difficulty of resource allocation in native Hadoop. H2Hadoop provides a

better resolution for “text data”, like finding DNA sequence and the motif of a dna sequence. Also, H2Hadoop

provides an efficient Data Mining approach for Cloud Computing environments. H2Hadoop architecture

leverages on Name Node’s ability to assign jobs to the TaskTrakers (Data Nodes) inside the cluster. By adding

control options to the Name Node, H2Hadoop will intelligently direct and assign tasks to the Data Nodes that

contain the desired knowledge while not causing the duty to the full cluster. Comparing with native Hadoop,

H2Hadoop reduces cpu time, range of read operations, and another Hadoop factors.

Keywords: Big Data, Cloud Computing, Hadoop, H2Hadoop, Hadoop Performance, MapReduce, Text Data.

I. INTRODUCTION

Parallel process in Cloud Computing has emerged as

an knowledge base analysis space because of the

heterogeneous nature and enormous size of

information. Translating sequential knowledge to

important info needs substantial procedure power

and economical algorithms to identify the degree of

similarities among multiple sequences. serial pattern

mining or knowledge analysis applications like, DNA

sequence orientating and motif finding typically

need giant and sophisticated amounts of information

processing and procedure capabilities . With

efficiency targeting and planning of procedure

resources is required to unravel such advanced issues.

Although, a number of the information sets ar

decipherable by humans, it is terribly advanced to be

understood and processed using ancient process

technique. Handiness of open supply and business

Cloud Computing parallel processing platforms have

opened new avenues to explore structured, semi-

structured or unstructured knowledge. Before we go

any longer, it's necessary to outline sure definitions

that are associated with Big Data and Hadoop.

Proposed algorithm:-

H2HADOOP:-

In existing Hadoop architecture, Name Node knows

the location of the data blocks in HDFS. Name Node

is responsible for assigning the jobs to a client and

dividing that job into tasks. Name Node further

assigns the tasks to the TasTrackers (Data Nodes).

Knowing which Data Node holds the blocks

containing the required data, Name Node should be

able to direct the jobs to the specific Data Nodes

without going through the whole cluster. In

http://ijsrcseit.com/

Volume 3, Issue 4 | March-April-2018 | http:// ijsrcseit.com

 1182

H2Hadoop, before assigning tasks to the Data Nodes,

we implemented a pre-processing phase in the Name

Node. Our focus is on identifying and extracting

features to build a metadata table that carries

information related to the location of the data blocks

with these features. Any job with the same features

should only read the data from these specific blocks

of the cluster without going through the whole data

again. Explanation of the proposed solution is as

follows:

Common Job Blocks Table (CJBT):-

Proposed Hadoop MapReduce workflow (H2Hadoop)

is the same as the original Hadoop in terms of

hardware, network, and nodes. However, the

software level has been enhanced. We added features

in Name Node that allow it to save specific data in a

look up table which named Common Job Blocks

Table CJBT. The proposed solution can only be used

for text data. Big Data, such as Genomic data and

books can be processed efficiently using the proposed

framework. CJBT stores information about the jobs

and the blocks associated with specific data and

features. This enables the related jobs to get the

results from specific blocks without checking the

entire cluster. Each CJBT is related to only one HDFS

data file, which means that there is only one table for

each data source file(s) in HDFS. In our research, we

took an example of genome Big Data to show the

functionality of enhanced Hadoop architecture. In

order to understand the framework of Mapping and

Reducing in the proposed platform, we searched for a

DNA sequence using H2Hadoop in HDFS. Sequence

aligning is an essential step for many molecular

biology and bioinformatics applications, such as

phylogenetic tree construction, gene finding, gene

function, and protein structure prediction.

Computationally intensive algorithms are used for

sequence alignment. Scalable parallel processing

Hadoop framework has been proposed and

implemented for the sequence alignment of genomic

data. Proposed Hadoop architecture relies on CJBT

for efficient data analysis. Each time a sequence is

aligned using dynamic programming and

conventional alignment algorithms, a common

feature that is a sequence or subsequence is identified

and updated in CJBT. Common features in CJBT can

be compared and updated each time clients submit a

new job to Hadoop. Consequently, the size of this

table should be controlled and limited to a specific

size to keep the architecture reliable and efficient. A

typical CJBT consists of three main components or

columns (Table I), which are explained below:

Common Job Name CJN:-

Common Job Name represents a shared name of a job

that each MapReduce client must use when

submitting a new job in order to get the benefit of

the proposed architecture. We define a library,

which contains a list of pre-coded jobs that is made

available to the user by an Application Program

Interface (API). The Jobs APIs provide a brief job

description and access to job data. The users select a

job name (or shared database name) from the list of

jobs already identified for a shared MapReduce job

(or data). This feature helps Name Node to identify

and match a job to a Data Node(s) containing block(s)

in the CJBT.

Common Feature CF:-

Common Features are defined as the shared data

between jobs. H2Hadoop supports caching, enables

output (or part of output) to be written in the CJBT

during the reduce step. We use Common Features to

identify the Data Nodes or the blocks with shared

data entries. JobTracker directs any new jobs with

the shared common features to block names in CJBT.

Suppose J1 and J2 are sequence search jobs, J1 uses

MapReduce to find the sequence in a DataNode or a

block. If J2 contains common feature of J1, it is

http://www.ijsrcseit.com/

Volume 3, Issue 4 | March-April-2018 | http:// ijsrcseit.com

 1183

logical to map the task and allocate the same data

resources of J1. When a sub-sequence arrives to the

Name Node as the result of a new job, the old

common feature will be replaced with the old one.

However, feature selection should be done carefully

as the response time for the jobs can increase if

common features exist in every Data Node. For

example, in genomic data, regulatory sequences and

protein binding sites are highly recurring sequences.

Using such sequences as common features can

degrade the performance of the proposed solution.

The length of common feature also plays on

important role in the proposed solution. If the

sequence is too short it will be present many times in

all chromosomes and all datasets. For a random

sequence Dn is the likelihood of how many times a

DNA sequence occurs in the whole human genome.

The likelihood of the binding sites for 9, 12 and 15

fingers, ZNF is presented in (TABLE II). For a

random sequence of length Dn, where n is the length

of nucleotide sequence, the likelihood of how many

times a sequence occurs in the whole human genome

is given by:

As shown in (TABLE II), the likelihood of any

random 9 base pair (bp) of a long nucleotides

sequence in a whole genome is quite large comparing

with 12 base pair (bp), and using a 9 bp long

sequence as a common feature will result in the

performance degradation of the proposed

architecture. The probability of any random 12 bp

long sequence in a human genome is 5.96 x 10-8

equaling 178 times.

Block Name BN:-

BlockName or BlockID is the location of the

common features. It identifies the block(s) in a

cluster where certain information is stored.

BlockName helps the NameNode direct jobs to

specific DataNodes that store these blocks in HDFS.

CJBT has the list of all blocks that are related to the

results of the common feature. For example, if a

sequence “TTTAGATCTAAAT” is only stored in B1

and B4, the NameNode will direct any job that has a

particular sequence to B1 and B4. This CJBT is a

dynamically configurable table and the BlockName

entries are changing as the common feature changes.

CJBT should not become too large because larger

lookup table tends to decrease the system

performance. The size of CJBT can be limited by

employing the 'leaky bucket' algorithm. The 'leaky

bucket' parameters can be adjusted to keep the size of

CJBT constant. This can be discussed more in future

work.

End-User Interface:-

A user interface gives the user a list of Common Job

Names (CJN) to choose from. As the tasks are

completed, CJBT is dynamically updated and more

relationships are defined. If the CJBT is empty, the

user will execute the MapReduce job in a traditional

way without getting the benefits of the proposed

solution. The predefined CJN and CF are defined

either by the user or by the user interface manager,

which might become a central source for updating

the lists for all clients.

H2Hadoop MapReduce Workflow:-

Enhanced Hadoop architecture doesn’t differ from

the native Hadoop architecture so it will be

enhancing only the software level through build

CJBT. Following chart (Figure 1) shows the proposed

changes in Name Node, which works as a lookup

table that contains metadata for the executed jobs in

H2Hadoop?

http://www.ijsrcseit.com/

Volume 3, Issue 4 | March-April-2018 | http:// ijsrcseit.com

 1184

Figure 1. H2Hadoop MapReduce Workflow

MapReduce workflow in H2Hadoop has been

explained in figure 4 as follows:

Step 1: Client “ A” sends a request to Name Node.

The request includes the need to copy the data files

to Data Nodes.

Step 2: Name Node replays with the IP address of

Data Nodes. In the above diagram Name Node replies

with the IP address of five nodes (DN1 to DN5).

Step 3: Client “A” accesses the raw data for

manipulation in Hadoop.

 Step 4: Client “A” formats the raw data into HDFS

format and divides blocks based on the data size. In

the above example the blocks B1to B4 are distributed

among the Data Nodes.

Step 5: Client “A” sends the three copies of each data

block to different Data Nodes.

Step 6: In this step, client “A” sends a MapReduce job

(job1) to the JobTracker daemon with the source data

file name(s).

Step 7: JobTracker sends the tasks to all TaskTrackers

holding the blocks of the data.

Step 8: Each Task Tracker executes a specific task on

each block and sends the results back to the

JobTracker.

Step 9: JobTracker sends the result to Client “A”. In

this step, Name Node keeps the names of the blocks

that produced the results in the local lookup table

(CJBT) by the Common Job Name (Job1) that has

common feature as explained above.

Step 10: Client “B” sends a new MapReduce job “Job2”

to the JobTracker with the same common job name

and same common feature or super-sequence of

“Job1”.

Step 11: JobTracker sends “job2” to TaskTrackers

who hold the blocks, which have the first result of

the MapReduce “Job1” (DN2, DN4, DN5). In this step,

the JobTracker starts with checking the CJBT first to

find if it is a new job which has the same common

name and common features of any previous ones or

not – In this case yes. Then the JobTracker sends

“Job2” only to TT2, TT4 and TT5. We may assume

here that the lookup table will be updated with more

details OR just remain as is because every time we

have a new job that may carry the same name of

“Job1”.

Step 12: TaskTrackers execute the tasks and send the

results back to the JobTracker.

Step 13: JobTracker sends the final result to Client

“B”.

The workflow that is shown above explains the

normal flow steps of the H2Hadoop MapReduce

framework. In addition, there should be a training

phase before starting the process of MapReduce to

have some metadata in the CJBT to receive the

benefits of the new architecture. From the flowchart

that is explained in Figure 5, we can see that there

are two more conditions in H2Hadoop when

compared with native Hadoop that perform with a

delay in job processing. However, if we have a

relationship between jobs, H2Hadoop performance

will be better than the native Hadoop. The above-

mentioned delay in H2Hadoop ultimately causes a

short delay in time.

http://www.ijsrcseit.com/

Volume 3, Issue 4 | March-April-2018 | http:// ijsrcseit.com

 1185

Figure 2. H2Hadoop MapReduce Workflow

Flowchart

In H2Hadoop, after launching a job there is a

condition that tests the name of the job. If the job

uses a CJN, which means this job is commonly used

and there might be a relationship between this job

and others. Otherwise, if the name of the job is not

common, it skips the second condition and reads the

whole data from the HDFS and completes the

execution. If the name of the job is common, which

means the first condition is “Yes”, it will check the

second condition, which tests the common feature of

the job. If the feature of the new job is common with

any previous job, the new job reads the specific data

blocks from the HDFS and sets them as source data

files, not the whole data block. Then the new job will

be executed normally. Under these two conditions,

H2Hadoop reduces the size of the data that is being

read by the new job. Consequently, this improves on

the Hadoop performance for jobs that are working on

similar data files.

II. CONCLUSION

In this work we have a tendency to gift increased

Hadoop framework that permits a Name Node to

spot the blocks within the cluster wherever sure info

is hold on. We mentioned the projected progress in

the proposed project and compared the expected

performance of proposed system to native system. In

this project, we have a tendency to browse less

information, so we have some Hadoop factors like

variety of browse operations, that area unit reduced

by the quantity of Data Nodes carrying the supply

information blocks, which is identified before

causation employment to Task Tracker. The

maximum variety of knowledge blocks that the Task

Tracker can assign to the work is adequate the

quantity of blocks that carries the supply information

associated with a selected common job.

III. REFERENCES

[1]. Ming, M., G. Jing, and C. Jun-jie. Blast-Parallel:

The parallelizing implementation of sequence

alignment algorithms based on Hadoop

platform. in Biomedical Engineering and

Informatics (BMEI), 2013 6th International

Conference on. 2013.

[2]. Schatz, M.C., B. Langmead, and S.L. Salzberg,

Cloud computing and the DNA data race.

Nature biotechnology, 2010. 28(7): p. 691.

[3]. Schadt, E.E., et al., Computational solutions to

large-scale data management and analysis.

Nature Reviews Genetics, 2010. 11(9): p. 647-

657.

[4]. Farrahi, K. and D. Gatica-Perez, A probabilistic

approach to mining mobile phone data

sequences. Personal Ubiquitous Comput., 2014.

18(1): p. 223-238.

[5]. Marx, V., Biology: The big challenges of big

data. Nature, 2013. 498(7453): p. 255-260.

[6]. Lohr, S., The age of big data. New York Times,

2012. 11.

[7]. Changqing, J., et al. Big Data Processing in

Cloud Computing Environments. in Pervasive

http://www.ijsrcseit.com/

Volume 3, Issue 4 | March-April-2018 | http:// ijsrcseit.com

 1186

Systems, Algorithms and Networks (ISPAN),

2012 12th International Symposium on. 2012.

[8]. Chen, M., S. Mao, and Y. Liu, Big Data: A

Survey. Mobile Networks and Applications,

2014. 19(2): p. 171-209.

[9]. Jagadish, H., et al., Big data and its technical

challenges. Communications of the ACM, 2014.

57(7): p. 86-94. 10. White, T., Hadoop: The

definitive guide. 2012: "O’Reilly Media, Inc.".

[10]. Patel, A.B., M. Birla, and U. Nair. Addressing

big data problem using Hadoop and Map

Reduce. in Engineering (NUiCONE), 2012

Nirma University International Conference on.

2012.

[11]. Hammoud, M. and M.F. Sakr. Locality-Aware

Reduce Task Scheduling for MapReduce. in

Cloud Computing Technology and Science

(CloudCom), 2011 IEEE Third International

Conference on. 2011. 12Dean, J. and S.

Ghemawat, MapReduce: simplified data

processing on large clusters. Communications

of the ACM, 2008. 51(1): p. 107-113.

[12]. Xiaowen Feng, Hai Jin, Ran Zheng, Zhiyuan

Shao, Lei Zhu," Implementing Smith-

Waterman Algorithm with Two-dimensional

Cache on GPUs " Second International

Conference on Cloud and Green Computing,

2012.

[13]. Novan Zulkarnain and Muhammad Anshari,

"Big Data: Concept, Applications, &

Challenges", International Conference on

Information Management and Technology

(ICIMTech),2016.

[14]. J. Ramsingh and V.Bhuvaneswari, "Data

Analytic on Diabetic awareness with Hadoop

Streaming using Map Reduce in Python", IEEE

International Conference on Advances in

Computer Applications (ICACA), 2016.

[15]. Ming Meng, Jing Gao*, Jun-jie Chen,"Blast-

Parallel: The parallelization implementation of

sequence alignment algorithm based on

Hadoop platform ", 6th International

Conference on Biomedical Engineering and

Informatics (BMEI 2013) , 2013.

[16]. Saad Khan Zahid, Laiq Hasan , Asif Ali Khan,

Salim Ullah, "A Novel Structire of Smith-

Waterman Algorithm for Efficient Sequence

alignment", ISBN: 978-1-4799-6376-

8/15/$31.00 ©2015 IEEE.

[17]. Miss. Anju Ramesh Ekre," Genome Sequence

Alignment tools: a Review", 978-1-4673-9745-

2 ©2016 IEEE.

[18]. Rohith K. Menon, Goutham P. Bhat and

Michael C. Schatz," Rapid Parallel Genome

Indexing with MapReduce",

http://www.genome10k.

[19]. Merina Maharjan, "Genome Analysis with

MapReduce", ttp://hadoop.apache.org/

http://www.ijsrcseit.com/

