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ABSTRACT 
 

Cloud Computing leverages Hadoop framework for process Big Data in parallel. Hadoop has bound limitations 

that could be exploited to execute the duty efficiently. These limitations square measure principally thanks to 

data section within the cluster jobs and tasks scheduling, and resource allocations in Hadoop. Economical 

resource allocation remains a challenge in Cloud Computing MapReduce platforms. We propose H2Hadoop 

that is an enhanced Hadoop design that reduces the computation value related to Big Data analysis. The 

projected design also addresses the difficulty of resource allocation in native Hadoop. H2Hadoop provides a 

better resolution for “text data”, like finding DNA sequence and the motif of a dna sequence. Also, H2Hadoop 

provides an efficient Data Mining approach for Cloud Computing environments. H2Hadoop architecture 

leverages on Name Node’s ability to assign jobs to the TaskTrakers (Data Nodes) inside the cluster. By adding 

control options to the Name Node, H2Hadoop will intelligently direct and assign tasks to the Data Nodes that 

contain the desired knowledge while not causing the duty to the full cluster. Comparing with native Hadoop, 

H2Hadoop reduces cpu time, range of read operations, and another Hadoop factors. 

Keywords:  Big Data, Cloud Computing, Hadoop, H2Hadoop, Hadoop Performance, MapReduce, Text Data. 

 

I. INTRODUCTION 

 
Parallel process in Cloud Computing has emerged as 

an knowledge base analysis space because of the 

heterogeneous nature and enormous size of 

information. Translating sequential knowledge to 

important info needs substantial procedure power 

and economical algorithms to identify the degree of 

similarities among multiple sequences. serial pattern 

mining or knowledge analysis applications like, DNA 

sequence orientating and motif finding typically 

need giant and sophisticated amounts of information 

processing and procedure capabilities . With 

efficiency targeting and planning of procedure 

resources is required to unravel such advanced issues. 

Although, a number of the information sets ar 

decipherable by humans, it is terribly advanced to be 

understood and processed using ancient process 

technique. Handiness of open supply and business 

Cloud Computing parallel processing platforms have 

opened new avenues to explore structured, semi-

structured or unstructured knowledge. Before we go 

any longer, it's necessary to outline sure definitions 

that are associated with Big Data and Hadoop. 

 

Proposed algorithm:- 

H2HADOOP:- 

In existing Hadoop architecture, Name Node knows 

the location of the data blocks in HDFS. Name Node 

is responsible for assigning the jobs to a client and 

dividing that job into tasks. Name Node further 

assigns the tasks to the TasTrackers (Data Nodes). 

Knowing which Data Node holds the blocks 

containing the required data, Name Node should be 

able to direct the jobs to the specific Data Nodes 

without going through the whole cluster. In 
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H2Hadoop, before assigning tasks to the Data Nodes, 

we implemented a pre-processing phase in the Name 

Node. Our focus is on identifying and extracting 

features to build a metadata table that carries 

information related to the location of the data blocks 

with these features. Any job with the same features 

should only read the data from these specific blocks 

of the cluster without going through the whole data 

again. Explanation of the proposed solution is as 

follows: 

 

Common Job Blocks Table (CJBT):- 

Proposed Hadoop MapReduce workflow (H2Hadoop) 

is the same as the original Hadoop in terms of 

hardware, network, and nodes. However, the 

software level has been enhanced. We added features 

in Name Node that allow it to save specific data in a 

look up table which named Common Job Blocks 

Table CJBT. The proposed solution can only be used 

for text data. Big Data, such as Genomic data and 

books can be processed efficiently using the proposed 

framework. CJBT stores information about the jobs 

and the blocks associated with specific data and 

features. This enables the related jobs to get the 

results from specific blocks without checking the 

entire cluster. Each CJBT is related to only one HDFS 

data file, which means that there is only one table for 

each data source file(s) in HDFS. In our research, we 

took an example of genome Big Data to show the 

functionality of enhanced Hadoop architecture. In 

order to understand the framework of Mapping and 

Reducing in the proposed platform, we searched for a 

DNA sequence using H2Hadoop in HDFS. Sequence 

aligning is an essential step for many molecular 

biology and bioinformatics applications, such as 

phylogenetic tree construction, gene finding, gene 

function, and protein structure prediction. 

Computationally intensive algorithms are used for 

sequence alignment. Scalable parallel processing 

Hadoop framework has been proposed and 

implemented for the sequence alignment of genomic 

data. Proposed Hadoop architecture relies on CJBT 

for efficient data analysis. Each time a sequence is 

aligned using dynamic programming and 

conventional alignment algorithms, a common 

feature that is a sequence or subsequence is identified 

and updated in CJBT. Common features in CJBT can 

be compared and updated each time clients submit a 

new job to Hadoop. Consequently, the size of this 

table should be controlled and limited to a specific 

size to keep the architecture reliable and efficient. A 

typical CJBT consists of three main components or 

columns (Table I), which are explained below: 

 
Common Job Name CJN:- 

Common Job Name represents a shared name of a job 

that each MapReduce client must use when 

submitting a new job in order to get the benefit of 

the proposed architecture. We define a library, 

which contains a list of pre-coded jobs that is made 

available to the user by an Application Program 

Interface (API). The Jobs APIs provide a brief job 

description and access to job data. The users select a 

job name (or shared database name) from the list of 

jobs already identified for a shared MapReduce job 

(or data). This feature helps Name Node to identify 

and match a job to a Data Node(s) containing block(s) 

in the CJBT. 

 

Common Feature CF:- 

Common Features are defined as the shared data 

between jobs. H2Hadoop supports caching, enables 

output (or part of output) to be written in the CJBT 

during the reduce step. We use Common Features to 

identify the Data Nodes or the blocks with shared 

data entries. JobTracker directs any new jobs with 

the shared common features to block names in CJBT. 

Suppose J1 and J2 are sequence search jobs, J1 uses 

MapReduce to find the sequence in a DataNode or a 

block. If J2 contains common feature of J1, it is 
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logical to map the task and allocate the same data 

resources of J1. When a sub-sequence arrives to the 

Name Node as the result of a new job, the old 

common feature will be replaced with the old one. 

However, feature selection should be done carefully 

as the response time for the jobs can increase if 

common features exist in every Data Node. For 

example, in genomic data, regulatory sequences and 

protein binding sites are highly recurring sequences. 

Using such sequences as common features can 

degrade the performance of the proposed solution. 

The length of common feature also plays on 

important role in the proposed solution. If the 

sequence is too short it will be present many times in 

all chromosomes and all datasets. For a random 

sequence Dn is the likelihood of how many times a 

DNA sequence occurs in the whole human genome. 

The likelihood of the binding sites for 9, 12 and 15 

fingers, ZNF is presented in (TABLE II). For a 

random sequence of length Dn, where n is the length 

of nucleotide sequence, the likelihood of how many 

times a sequence occurs in the whole human genome 

is given by: 

 

 
As shown in (TABLE II), the likelihood of any 

random 9 base pair (bp) of a long nucleotides 

sequence in a whole genome is quite large comparing 

with 12 base pair (bp), and using a 9 bp long 

sequence as a common feature will result in the 

performance degradation of the proposed 

architecture. The probability of any random 12 bp 

long sequence in a human genome is 5.96 x 10-8 

equaling 178 times. 

 

 

 

Block Name BN:- 

BlockName or BlockID is the location of the 

common features. It identifies the block(s) in a 

cluster where certain information is stored. 

BlockName helps the NameNode direct jobs to 

specific DataNodes that store these blocks in HDFS. 

CJBT has the list of all blocks that are related to the 

results of the common feature. For example, if a 

sequence “TTTAGATCTAAAT” is only stored in B1 

and B4, the NameNode will direct any job that has a 

particular sequence to B1 and B4. This CJBT is a 

dynamically configurable table and the BlockName 

entries are changing as the common feature changes. 

CJBT should not become too large because larger 

lookup table tends to decrease the system 

performance. The size of CJBT can be limited by 

employing the 'leaky bucket' algorithm. The 'leaky 

bucket' parameters can be adjusted to keep the size of 

CJBT constant. This can be discussed more in future 

work. 

 

End-User Interface:- 

A user interface gives the user a list of Common Job 

Names (CJN) to choose from. As the tasks are 

completed, CJBT is dynamically updated and more 

relationships are defined. If the CJBT is empty, the 

user will execute the MapReduce job in a traditional 

way without getting the benefits of the proposed 

solution. The predefined CJN and CF are defined 

either by the user or by the user interface manager, 

which might become a central source for updating 

the lists for all clients. 

 

H2Hadoop MapReduce Workflow:- 

Enhanced Hadoop architecture doesn’t differ from 

the native Hadoop architecture so it will be 

enhancing only the software level through build 

CJBT. Following chart (Figure 1) shows the proposed 

changes in Name Node, which works as a lookup 

table that contains metadata for the executed jobs in 

H2Hadoop? 
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Figure 1. H2Hadoop MapReduce Workflow 

 

MapReduce workflow in H2Hadoop has been 

explained in figure 4 as follows:  

Step 1: Client “ A” sends a request to Name Node. 

The request includes the need to copy the data files 

to Data Nodes.  

Step 2: Name Node replays with the IP address of 

Data Nodes. In the above diagram Name Node replies 

with the IP address of five nodes (DN1 to DN5).  

Step 3: Client “A” accesses the raw data for 

manipulation in Hadoop. 

 Step 4: Client “A” formats the raw data into HDFS 

format and divides blocks based on the data size. In 

the above example the blocks B1to B4 are distributed 

among the Data Nodes.  

Step 5: Client “A” sends the three copies of each data 

block to different Data Nodes.  

Step 6: In this step, client “A” sends a MapReduce job 

(job1) to the JobTracker daemon with the source data 

file name(s). 

Step 7: JobTracker sends the tasks to all TaskTrackers 

holding the blocks of the data.  

Step 8: Each Task Tracker executes a specific task on 

each block and sends the results back to the 

JobTracker. 

Step 9: JobTracker sends the result to Client “A”. In 

this step, Name Node keeps the names of the blocks 

that produced the results in the local lookup table 

(CJBT) by the Common Job Name (Job1) that has 

common feature as explained above.  

Step 10: Client “B” sends a new MapReduce job “Job2” 

to the JobTracker with the same common job name 

and same common feature or super-sequence of 

“Job1”.  

Step 11: JobTracker sends “job2” to TaskTrackers 

who hold the blocks, which have the first result of 

the MapReduce “Job1” (DN2, DN4, DN5). In this step, 

the JobTracker starts with checking the CJBT first to 

find if it is a new job which has the same common 

name and common features of any previous ones or 

not – In this case yes. Then the JobTracker sends 

“Job2” only to TT2, TT4 and TT5. We may assume 

here that the lookup table will be updated with more 

details OR just remain as is because every time we 

have a new job that may carry the same name of 

“Job1”.  

Step 12: TaskTrackers execute the tasks and send the 

results back to the JobTracker.  

Step 13: JobTracker sends the final result to Client 

“B”. 

 

The workflow that is shown above explains the 

normal flow steps of the H2Hadoop MapReduce 

framework. In addition, there should be a training 

phase before starting the process of MapReduce to 

have some metadata in the CJBT to receive the 

benefits of the new architecture. From the flowchart 

that is explained in Figure 5, we can see that there 

are two more conditions in H2Hadoop when 

compared with native Hadoop that perform with a 

delay in job processing. However, if we have a 

relationship between jobs, H2Hadoop performance 

will be better than the native Hadoop. The above-

mentioned delay in H2Hadoop ultimately causes a 

short delay in time. 
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Figure 2. H2Hadoop MapReduce Workflow 

Flowchart 

 

In H2Hadoop, after launching a job there is a 

condition that tests the name of the job. If the job 

uses a CJN, which means this job is commonly used 

and there might be a relationship between this job 

and others. Otherwise, if the name of the job is not 

common, it skips the second condition and reads the 

whole data from the HDFS and completes the 

execution. If the name of the job is common, which 

means the first condition is “Yes”, it will check the 

second condition, which tests the common feature of 

the job. If the feature of the new job is common with 

any previous job, the new job reads the specific data 

blocks from the HDFS and sets them as source data 

files, not the whole data block. Then the new job will 

be executed normally. Under these two conditions, 

H2Hadoop reduces the size of the data that is being 

read by the new job. Consequently, this improves on 

the Hadoop performance for jobs that are working on 

similar data files. 

 

II. CONCLUSION 

 

In this work we have a tendency to gift increased 

Hadoop framework that permits a Name Node to 

spot the blocks within the cluster wherever sure info 

is hold on. We mentioned the projected progress in 

the proposed project and compared the expected 

performance of proposed system to native system. In 

this project, we have a tendency to browse less 

information, so we have some Hadoop factors like 

variety of browse operations, that area unit reduced 

by the quantity of Data Nodes carrying the supply 

information blocks, which is identified before 

causation employment to Task Tracker. The 

maximum variety of knowledge blocks that the Task 

Tracker can assign to the work is adequate the 

quantity of blocks that carries the supply information 

associated with a selected common job. 
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