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ABSTRACT 
 

Web search engines are made by thousands out of question handling hubs, i.e., servers devoted to process client 

inquiries. Such numerous servers expend a lot of energy, for the most part responsible to their CPUs, however 

they are important to guarantee low latencies, since clients expect sub-second reaction times (e.g., 500 ms). In 

any case, clients can scarcely see reaction times that are quicker than their desires. Henceforth, we propose the 

Predictive Energy Saving Online Scheduling Algorithm (PESOS) to choose the most  proper CPU recurrence to 

process an inquiry on a for every center premise. PESOS goes for process questions by their due dates, and use  

abnormal state scheduling data to decrease the CPU energy utilization of a question handling hub. PESOS 

constructs its choice in light of inquiry effectiveness indicators, evaluating the preparing volume and handling 

time of a question. We tentatively assess PESOS upon the TREC ClueWeb09B gathering and the MSN2006 

inquiry log. Results demonstrate that PESOS can decrease the CPU energy utilization of a question preparing 

hub up to  48% contrasted with a framework running at most extreme CPU center recurrence. PESOS beats 

moreover  the best in class contender with a  20% energy saving, while the contender requires a fine parameter 

tuning and it might brings about in wild inertness infringement. 

Keywords: Energy consumption, CPU Dynamic Voltage and Frequency Scaling, Web search engines. 

 

I. INTRODUCTION 

 
Web search engines continuously crawl and index an 

im-mense number of Web pages to return fresh and 

relevant results to the users’ queries. Users’ queries 

are processed by query processing nodes, i.e., 

physical servers dedicated to this task. Web search 

engines are typically composed by thousands of these 

nodes, hosted in large datacenters which also include 

infrastructures for telecommunication, thermal 

cooling, fire suppression, power supply, etc [1]. This 

complex infrastructure is necessary to have low tail 

latencies (e.g., 95-th percentile) to guarantee that 

most users will receive results in sub-second times 

(e.g., 500 ms), in line with their expec-tations [2]. At 

the same time, such many servers consume a 

significant amount of energy, hindering the 

profitability of the search engines and raising 

environmental concerns. In fact, datacenters can 

consume tens of megawatts of electric power [1] and 

the related expenditure can exceed the original 

investment cost for a datacenter [3]. Because of their 

energy consumption, datacenters are responsible for 

the 14% of the ICT sector carbon dioxide emissions 

[4], which are the main cause of global warming. For 

this reason, governments are promoting codes of 

conduct and best practices [5], [6] to reduce the 

environmental impact of datacenters. 

 

Since energy consumption has an important role on 

the profitability and environmental impact of Web 

search engines, improving their energy efficiency is 

an important aspect. Noticeably, users can hardly 

notice response times that are faster than their 

expectations [2]. Therefore, to reduce energy 

consumption, Web search engines should answer 

queries no faster than user expectations. In this work, 

we focus onreducing the energy consumption of 
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servers’ CPUs, which are the most energy consuming 

components in search systems [1]. To this end, 

Dynamic Frequency and Voltage Scaling (DVFS) 

technologies [7] can be exploited. DVFS technologies 

allow to vary the frequency and voltage of the CPU 

cores of a server, trading off performance (i.e., longer 

response times) for lower energy consumptions. 

Several power management policies leverage DVFS 

technologies to scale the frequency of CPU cores 

accordingly to their utilization [8], [9]. However, 

core utilization-based policies have no mean to 

impose a required tail latency on a query processing 

node. As a result, the query processing node can 

consume more energy than necessary in providing 

query results faster than required, with no benefit 

for the users. 

 

In this work we propose the Predictive Energy 

Saving On-line Scheduling algorithm (PESOS), 

which considers the tail latency requirement of 

queries as an explicit parameter. Via the DVFS 

technology, PESOS selects the most appropriate CPU 

frequency to process a query on a per-core basis, so 

that the CPU energy consumption is reduced while 

respecting a required tail latency. The algorithm 

bases its decision on query efficiency predictors 

rather than core utilization. Queryefficiency 

predictors are techniques to estimate the processing 

time of a query before its processing. They have been 

proposed to improve the performance of a search 

engine, for instance to take decision about query 

scheduling [10] or query processing parallelization 

[11], [12]. However, to the best of our knowl-edge, 

query efficiency predictor have not been considered 

for reducing the energy consumption of query 

processing nodes. 

 

We build upon the approach described in [10] and 

propose two novel query efficiency predictor 

techniques: one to esti-mate the number of postings 

that must be scored to process a query, and one to 

estimate the response time of a query under a 

particular core frequency given the number of 

postings to score. PESOS exploits these two 

predictors to determine which is the lowest possible 

core frequency that can be used to process a query, so 

that the CPU energy consumption is reduced while 

satisfying the required tail latency. As predictors can 

be inaccurate, in this work we also propose and 

investigate a way to compensate prediction errors 

using the root mean square error of the predictors. 

+ 

We experimentally evaluate PESOS upon the TREC 

ClueWeb09 corpus and the query stream from the 

MSN2006 query log. We compare the performance of 

our approach with those of three baselines: perf [8], 

which always uses the maximum CPU core 

frequency, power [8], which throttles CPU core 

frequencies according to the core utilizations, and 

cons [13], which performs frequency throttling 

according tothe query server utilization. PESOS, 

with predictors correc-tion, is able to meet the tail 

latency requirements while re-ducing the CPU 

energy consumption from ∼24% up to ∼44% with 

respect to perf and up to ∼20% with respect to cons, 

which however incurs in uncontrollable latency 

violations. Moreover, the experiments show that 

energy consumption can be further reduced by 

PESOS when prediction correction is not used, but 

with higher tail latencies. 

 

The rest of the paper is structured as follows: Section 

2 provides background information about the energy 

consump-tion of Web search engine datacenters, the 

query processing activity, and the query efficiency 

predictors.  

II. BACKGROUND 

 

In this section we will discuss the energy-related 

issues in-curred by Web search engines (Sec. 2.1). 

Then, we will explain how query processing works 

and some techniques to reduce query response times 

(Sec. 2.2). Finally, we will discuss about query 

efficiency predictors, which we exploit to reduce 

theenergy consumption of a Web search engine 

while maintaining low tail latencies (Sec. 2.3). 
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2.1 Web search engine and energy consumption 

In the past, a large part of a datacenter energy 

consumption was accounted to inefficiencies in its 

cooling and power supply systems. However, Barroso 

et al. [1] report that modern datacenters have largely 

reduced the energy wastage of those infrastructures, 

leaving little room for further improvement. On the 

contrary, opportunities exist to reduce the energy 

consumption of the servers hosted in a datacenter. In 

par-ticular, our work focuses on the CPU power 

management of query processing nodes, since the 

CPUs dominate the energy consumption of physical 

servers dedicated to search tasks. In fact, CPUs can 

use up to 66% of the whole energy consumed by a 

query processing node at peak utilization [1]. 

 

Modern CPUs usually expose two energy saving 

mecha-nism, namely C-states and P-states. C-states 

represent CPU cores idle states and they are typically 

anaged by the operating system [14]. C0 is the 

operative state in which a CPU core can perform 

computing tasks. When idle periodsoccur, i.e., when 

there are no computing tasks to perform, the core 

can enter one of the other deeper C-states and 

become inoperative. However, Web search engines 

process a large and continuous stream of queries. As a 

result, query processing nodes are rarely inactive and 

experience particularly short idle times. 

Consequently, there are little opportunities to exploit 

deep C-states, reducing the energy savings provided 

by the C-states in a Web search engine system [15], 

[16]. 

 

When a CPU core is in the active C0 state, it can op-

erate at different frequencies (e.g., 800 MHz, 1.6 

GHz, 2.1 GHz, . . . ). This is possible thanks to the 

Dynamic Frequency and Voltage Scaling (DVFS) 

technology [7] which permits to adjust the frequency 

and voltage of a core to vary its perfor-mance and 

power consumption. In fact, higher core frequen-cies 

mean faster computations but higher power 

consumption. Vice versa, lower frequencies lead to 

slower computations and reduced power 

consumption. The various configurations of voltage 

and frequency available to the CPU cores are 

mapped to different P-states, and are managed by the 

operating system. For instance, the intelpstate driver 

controls the P-states on Linux systems1 and can 

operate accordingly to two different policies, namely 

perf and power. The perf policy simply uses the 

highest frequency to process computing tasks. 

Instead, power selects the frequency for a core 

accord-ing to its utilization. When a core is highly 

utilized, power selects an high frequency. 

Conversely, it will select a lower frequency when 

the core is lowly utilized. However, Lo et. al [15] 

argue that core utilization is a poor choice for 

managing the cores frequencies of query processing 

nodes. In fact, the authors report an increase of 

query response times when core utilization-based 

policies are used in a Web search engine. For such 

reason, Catena et al. 

 

propose to control the frequency of CPU cores based 

on the utilization of the query processing node rather 

than on the utilization of the cores. The utilization of 

a node is computed as the ratio between the query 

arrival rate and service rate. Then, they propose the 

cons policy which throttles the frequency of the CPU 

coreswhen the utilization of the node is above or 

below certain thresholds (e.g., 80% and 20%, 

respectively). The frequency is selected so to produce 

a desirable utilization level (e.g., 70%). Similarly, in 

our work we control the CPU cores frequencies of a 

query processing node using information related to 

the query processing activity rather than to the CPU 

cores utilization (see Sec. 4). To this end, we build 

our approach on top of the acpicpufreqdriver [9]. 

This driver allows applications to directly manage 

the CPU cores frequency, instead of relying on the 

operative systems. 

 

2.2 Query processing and dynamic pruning 

Web search engines continuously crawl a large 

amount of Web pages. This collection of documents 
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is then indexed to produce an inverted index [17]. 

The inverted index is a data structure that maps each 

term in the document collection to a posting list, i.e., 

a list of postings which indicates the occurrence of a 

term in a document. A posting contains at least the 

identifier (i.e., a natural number) of the document 

where the term appears and its term frequency, i.e., 

the number of occurrences of the term in that 

particular document. The inverted index is usually 

compressed [18] and kept in main memory to 

increase the performance of the search engine [19]. 

 

When a query is submitted to a Web search engine, 

it is dispatched to a query processing node. This 

retrieves a ranked list of documents that are relevant 

for the query, i.e., the top K documents relevant to a 

user query, sorted in decreasingorder of relevance 

score (e.g., by using the popular BM25 weighting 

model [20]). To generate the top K results list, the 

processing node exhaustively traverses all the posting 

lists relative to the query terms. This is 

computationally expensive, since the inverted index 

can easily measure tens of gigabytes, so dynamic 

pruning techniques are adopted [21], [22]. Such 

techniques avoid to evaluate irrelevant documents, 

skipping over portions of the posting lists. This 

reduces the response time as the systems avoid to 

access and decompress portion of the inverted index. 

At the same time, these dynamic pruning techniques 

are safe-up-to-K, i.e., they produce the same top K 

results list returned by an exhaustive traversal of the 

posting lists. For such reasons, in this work we apply 

dynamic pruning strategies to the processing of 

queries. 

 

2.3 Query efficiency predictors 

Query efficiency predictors (QEPs) are techniques 

that es-timate the execution time of a query before it 

is actually processed. Knowing in advance the 

execution time of queries permits to improve the 

performance of a search engine. Most QEPs exploit 

the characteristics of the query and the inverted 

index to pre-compute features to be exploited to 

estimate the query processing times. For instance, 

Macdonald et al. [10] propose to use term-based 

features (e.g., the inverse docu-ment frequency of 

the term, its maximum relevance score among others) 

to predict the execution time of a query. They exploit 

their QEPs to implement on-line algorithms to 

schedule queries across processing node, in order to 

reduce the average query waiting and completion 

times. The works [11], [12], instead, address the 

problem to whether parallelize or not the processing 

of a query. In fact, parallel processing can reduce the 

execution time of long-running queries but provides 

limited benefits when dealing with short-running 

ones. Both the works propose QEPs to detect long-

running queries. The processing of the query is 

parallelized only if their QEPs detect the query as a 

long-running one. Rather then combining term-

based features, Wu et al. [23] propose to analytically 

model the query processing stages and to use such 

model to predict the execution time of queries. 

 

In our work, we modify the QEPs described in [10] 

to develop our algorithm for reducing the energy 

consumption of a processing node while maintaining 

low tail latencies. 

III. EXISTING SYSTEM  

 

In the following, we introduce the operative scenario 

of a query processing node (Sec. 3.1), we formalize 

the general minimum-energy scheduling problem 

and we shortly present the state-of-the-art algorithm 

to solve it offline (Sec. 3.2), and we discuss the issues 

of this offline algorithm in our scenario (Sec. 3.3). 

 

3.1 Operative scenario 

A query processing node is a physical server 

composed by several multi-core processors/CPUs 

with a shared memory which holds the inverted 

index. The inverted index can be partitioned into 

shards and distributed across multiple query 

processing nodes. In this work, we focus on reducing 

the CPU energy consumption of single query 

processing nodes, independently of the adopted 

http://www.ijsrcseit.com/


Volume 4, Issue 2 | March-April-2018  |   http:// ijsrcseit.com  

 
 54 

partition strategy. In the following, we assume that 

each query processing node holds an identical replica 

of the inverted index [24]. 

 

A query server process is executed on top of each of 

the CPU core of the processing node (see Figure 1). 

All query servers access a shared inverted index held 

in main memory to process queries. Each query 

server manages a queue, where the incoming queries 

are stored. The first query in the queue is processed 

as soon as the corresponding CPU core is idle. The 

queued queries are processed following the first-

come firstserved policy. The number of queries in a 

query server’s queue represents the server load. 

Queries arrive to the processing node as a stream S = 

{q1, . . . 

1. qn}. When a query reaches the processing node it 

is dispatched to a query server by a query router. The 

query router dispatches an incoming query to the 

least loaded query server, i.e., to the server with the 

smallest number of enqueued queries. Alternatively, 

the query processing node could have a single query 

queue and dispatch queries from the queue to idle 

query servers. In this work, we use a queue for each 

query servers since a single queue will not permit to 

take local decisions about the CPU core frequency to 

use for the relative query server. A similar queue-

per-core architecture is assumed in [25], to schedule 

jobs across CPU cores to minimize the CPU energy 

consumption, and in [10] 

 

IV. PROPOSED WORK 

 

We propose the Predictive Energy Saving Online 

Scheduling algorithm (PESOS), which considers the 

tail latency requirement of queries as an express 

parameter. Via the Dynamic Frequency and Voltage 

Scaling (DVFS) era, PESOS selects the most suitable 

CPU frequency to method a query on a in keeping 

with-middle foundation, in order that the CPU 

power consumption is reduced even as respecting 

required tail latency. The algorithm bases its choice 

on query efficiency predictors in place of center 

usage. Query performance predictors are strategies to 

estimate the processing time of a query before its 

processing. In this paper we attention on lowering 

the CPU strength consumption of single query 

processing nodes, independently of the followed 

partition method. A query processing node is a 

physical server composed by numerous multi-core 

processors/CPUs with a shared memory. A query 

server system is achieved on pinnacle of each of the 

CPU middle of the processing node. All query servers 

get admission to a shared inverted index held in 

major reminiscence to method queries. 

 
Figure 1. Structure of the Query Processing Node. 

 

Each query server manages a queue, wherein the 

incoming queries are stored. The first query in the 

queue is processed as soon because the corresponding 

CPU center is idle. The queued queries are processed 

following the primary-come first served coverage. 

The number of queries in a query server’s queue 

represents the server load. Queries arrive to the 

processing node as a circulation S = q1. . . qn. When a 

query reaches the processing node it's far dispatched 

to a query server by a query router. The query router 

dispatches an incoming query to the least loaded 

query server, i.e., to the server with the smallest 

variety of enqueued queries as shown in Fig.1. 

Alternatively, the query processing node could have 

a single query queue and dispatch queries from the 

queue to idle query servers. In this work, we use a 

queue for each query servers considering that a single 

queue will no longer permit to take nearby selections 

approximately the CPU middle frequency to apply 

for the relative query server. 

 

C. Root Mean Square Error (RMSE) 
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The Root Mean Square Error (RMSE) is an often used 

measure of the differentiation among values 

predicted by a model & the values actually captured 

from the environment that is being modeled. These 

individual differentiations are also referred residuals, 

& the RMSE provides to aggregate them into a single 

measure of predictive power. The RMSE of a 

representation prediction with value to the 

predictable variable Xmodel is distincted as the square 

root of the mean squared error: 

 

 

RMS

E    

 in 1 ( X obs , i   X 

mo  del , i ) 2  

n 

 

 (1) 

 

where Xobs is practical values & Xmodel is modeled 

values at time/place i.In this proposed Predictive 

Energy Saving Online Scheduling algorithm, we can 

record this error for query efficiency predictors. 

 

D. Applying Query Efficiency Prediction to Query 

Scheduling 

While in popular the primary retrieval performance 

degree is the common time required to manner the 

queries (common response time), when a move of 

queries is acquired by using a search engine, it might 

not be possible to start processing a brand new 

question as soon because it arrives. Instead, when the 

system is busy processing a query, next queries are 

queued. Therefore, the real time delay experienced 

with the aid of a user whilst waiting for seek 

consequences (finishing touch time) is given through 

the execution time (response time) of the question, 

plus the time the question spent ready to be 

processed (ready time). Classically, queued queries 

were processed in a FIFO manner. However these 

only consequences in minimizing queuing time if 

every query has an equal response time. Instead, we 

recommend that queues of queries can be scheduled 

to execute out of arrival order, by way of deploying 

unique scheduling algorithms. In this manner, for 

example, short queries may be scheduled among 

longer queries, to lessen the mean time put off skilled 

through the user populace of the quest engine. 

 

V. CONCLUSIONS 

 

In this paper, we proposed the Predictive Energy 

Saving Online Scheduling (PESOS) algorithm. With 

regards to Web search engines, PESOS intends to 

decrease the CPU en-ergy utilization of an inquiry 

handling hub while forcing a required tail inactivity 

on the question reaction times. For each question, 

PESOS chooses the most minimal conceivable CPU 

center recurrence with the end goal that the energy 

utilization is diminished and the due dates are 

regarded. PESOS chooses the correct CPU center 

recurrence abusing two different sorts of question 

efficiency indicators (QEPs). The main QEP gauges 

the preparing volume of questions. The second QEP 

gauges the question handling times under different 

center frequencies, given the quantity of postings to 

score. Since QEPs can be wrong, amid their 

preparation we recorded the root mean square 

blunder (RMSE) of the forecasts. In this work, we 

proposed to total the RMSE to the genuine forecasts 

to repay expectation blunders. We at that point 

characterized two conceivable setups for PESOS: 

time traditionalist, where forecast rectification is 

authorized, and energy preservationist, where QEPs 

are left unmodified 
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