
CSEIT1833612 | Received : 01 April 2018 | Accepted : 10 April 2018 | March-April-2018 [(4) 2 : 50-56]

International Journal of Scientific Research in Computer Science, Engineering and Information Technology

© 2018 IJSRCSEIT | Volume 4 | Issue 2 | ISSN : 2456-3307

50

Reducing the Energy Consumption Energy-Efficient Query
Processing Node In Web Search Engines

K.Hari Krishna *1, Kosuru Anusha Rani 2
 1*harikanagala@gmail.com,anuranikosuru501@gmail.com

ABSTRACT

Web search engines are made by thousands out of question handling hubs, i.e., servers devoted to process client

inquiries. Such numerous servers expend a lot of energy, for the most part responsible to their CPUs, however

they are important to guarantee low latencies, since clients expect sub-second reaction times (e.g., 500 ms). In

any case, clients can scarcely see reaction times that are quicker than their desires. Henceforth, we propose the

Predictive Energy Saving Online Scheduling Algorithm (PESOS) to choose the most proper CPU recurrence to

process an inquiry on a for every center premise. PESOS goes for process questions by their due dates, and use

abnormal state scheduling data to decrease the CPU energy utilization of a question handling hub. PESOS

constructs its choice in light of inquiry effectiveness indicators, evaluating the preparing volume and handling

time of a question. We tentatively assess PESOS upon the TREC ClueWeb09B gathering and the MSN2006

inquiry log. Results demonstrate that PESOS can decrease the CPU energy utilization of a question preparing

hub up to 48% contrasted with a framework running at most extreme CPU center recurrence. PESOS beats

moreover the best in class contender with a 20% energy saving, while the contender requires a fine parameter

tuning and it might brings about in wild inertness infringement.

Keywords: Energy consumption, CPU Dynamic Voltage and Frequency Scaling, Web search engines.

I. INTRODUCTION

Web search engines continuously crawl and index an

im-mense number of Web pages to return fresh and

relevant results to the users’ queries. Users’ queries

are processed by query processing nodes, i.e.,

physical servers dedicated to this task. Web search

engines are typically composed by thousands of these

nodes, hosted in large datacenters which also include

infrastructures for telecommunication, thermal

cooling, fire suppression, power supply, etc [1]. This

complex infrastructure is necessary to have low tail

latencies (e.g., 95-th percentile) to guarantee that

most users will receive results in sub-second times

(e.g., 500 ms), in line with their expec-tations [2]. At

the same time, such many servers consume a

significant amount of energy, hindering the

profitability of the search engines and raising

environmental concerns. In fact, datacenters can

consume tens of megawatts of electric power [1] and

the related expenditure can exceed the original

investment cost for a datacenter [3]. Because of their

energy consumption, datacenters are responsible for

the 14% of the ICT sector carbon dioxide emissions

[4], which are the main cause of global warming. For

this reason, governments are promoting codes of

conduct and best practices [5], [6] to reduce the

environmental impact of datacenters.

Since energy consumption has an important role on

the profitability and environmental impact of Web

search engines, improving their energy efficiency is

an important aspect. Noticeably, users can hardly

notice response times that are faster than their

expectations [2]. Therefore, to reduce energy

consumption, Web search engines should answer

queries no faster than user expectations. In this work,

we focus onreducing the energy consumption of

http://ijsrcseit.com/

Volume 4, Issue 2 | March-April-2018 | http:// ijsrcseit.com

 51

servers’ CPUs, which are the most energy consuming

components in search systems [1]. To this end,

Dynamic Frequency and Voltage Scaling (DVFS)

technologies [7] can be exploited. DVFS technologies

allow to vary the frequency and voltage of the CPU

cores of a server, trading off performance (i.e., longer

response times) for lower energy consumptions.

Several power management policies leverage DVFS

technologies to scale the frequency of CPU cores

accordingly to their utilization [8], [9]. However,

core utilization-based policies have no mean to

impose a required tail latency on a query processing

node. As a result, the query processing node can

consume more energy than necessary in providing

query results faster than required, with no benefit

for the users.

In this work we propose the Predictive Energy

Saving On-line Scheduling algorithm (PESOS),

which considers the tail latency requirement of

queries as an explicit parameter. Via the DVFS

technology, PESOS selects the most appropriate CPU

frequency to process a query on a per-core basis, so

that the CPU energy consumption is reduced while

respecting a required tail latency. The algorithm

bases its decision on query efficiency predictors

rather than core utilization. Queryefficiency

predictors are techniques to estimate the processing

time of a query before its processing. They have been

proposed to improve the performance of a search

engine, for instance to take decision about query

scheduling [10] or query processing parallelization

[11], [12]. However, to the best of our knowl-edge,

query efficiency predictor have not been considered

for reducing the energy consumption of query

processing nodes.

We build upon the approach described in [10] and

propose two novel query efficiency predictor

techniques: one to esti-mate the number of postings

that must be scored to process a query, and one to

estimate the response time of a query under a

particular core frequency given the number of

postings to score. PESOS exploits these two

predictors to determine which is the lowest possible

core frequency that can be used to process a query, so

that the CPU energy consumption is reduced while

satisfying the required tail latency. As predictors can

be inaccurate, in this work we also propose and

investigate a way to compensate prediction errors

using the root mean square error of the predictors.

+

We experimentally evaluate PESOS upon the TREC

ClueWeb09 corpus and the query stream from the

MSN2006 query log. We compare the performance of

our approach with those of three baselines: perf [8],

which always uses the maximum CPU core

frequency, power [8], which throttles CPU core

frequencies according to the core utilizations, and

cons [13], which performs frequency throttling

according tothe query server utilization. PESOS,

with predictors correc-tion, is able to meet the tail

latency requirements while re-ducing the CPU

energy consumption from ∼24% up to ∼44% with

respect to perf and up to ∼20% with respect to cons,

which however incurs in uncontrollable latency

violations. Moreover, the experiments show that

energy consumption can be further reduced by

PESOS when prediction correction is not used, but

with higher tail latencies.

The rest of the paper is structured as follows: Section

2 provides background information about the energy

consump-tion of Web search engine datacenters, the

query processing activity, and the query efficiency

predictors.

II. BACKGROUND

In this section we will discuss the energy-related

issues in-curred by Web search engines (Sec. 2.1).

Then, we will explain how query processing works

and some techniques to reduce query response times

(Sec. 2.2). Finally, we will discuss about query

efficiency predictors, which we exploit to reduce

theenergy consumption of a Web search engine

while maintaining low tail latencies (Sec. 2.3).

http://www.ijsrcseit.com/

Volume 4, Issue 2 | March-April-2018 | http:// ijsrcseit.com

 52

2.1 Web search engine and energy consumption

In the past, a large part of a datacenter energy

consumption was accounted to inefficiencies in its

cooling and power supply systems. However, Barroso

et al. [1] report that modern datacenters have largely

reduced the energy wastage of those infrastructures,

leaving little room for further improvement. On the

contrary, opportunities exist to reduce the energy

consumption of the servers hosted in a datacenter. In

par-ticular, our work focuses on the CPU power

management of query processing nodes, since the

CPUs dominate the energy consumption of physical

servers dedicated to search tasks. In fact, CPUs can

use up to 66% of the whole energy consumed by a

query processing node at peak utilization [1].

Modern CPUs usually expose two energy saving

mecha-nism, namely C-states and P-states. C-states

represent CPU cores idle states and they are typically

anaged by the operating system [14]. C0 is the

operative state in which a CPU core can perform

computing tasks. When idle periodsoccur, i.e., when

there are no computing tasks to perform, the core

can enter one of the other deeper C-states and

become inoperative. However, Web search engines

process a large and continuous stream of queries. As a

result, query processing nodes are rarely inactive and

experience particularly short idle times.

Consequently, there are little opportunities to exploit

deep C-states, reducing the energy savings provided

by the C-states in a Web search engine system [15],

[16].

When a CPU core is in the active C0 state, it can op-

erate at different frequencies (e.g., 800 MHz, 1.6

GHz, 2.1 GHz, . . .). This is possible thanks to the

Dynamic Frequency and Voltage Scaling (DVFS)

technology [7] which permits to adjust the frequency

and voltage of a core to vary its perfor-mance and

power consumption. In fact, higher core frequen-cies

mean faster computations but higher power

consumption. Vice versa, lower frequencies lead to

slower computations and reduced power

consumption. The various configurations of voltage

and frequency available to the CPU cores are

mapped to different P-states, and are managed by the

operating system. For instance, the intelpstate driver

controls the P-states on Linux systems1 and can

operate accordingly to two different policies, namely

perf and power. The perf policy simply uses the

highest frequency to process computing tasks.

Instead, power selects the frequency for a core

accord-ing to its utilization. When a core is highly

utilized, power selects an high frequency.

Conversely, it will select a lower frequency when

the core is lowly utilized. However, Lo et. al [15]

argue that core utilization is a poor choice for

managing the cores frequencies of query processing

nodes. In fact, the authors report an increase of

query response times when core utilization-based

policies are used in a Web search engine. For such

reason, Catena et al.

propose to control the frequency of CPU cores based

on the utilization of the query processing node rather

than on the utilization of the cores. The utilization of

a node is computed as the ratio between the query

arrival rate and service rate. Then, they propose the

cons policy which throttles the frequency of the CPU

coreswhen the utilization of the node is above or

below certain thresholds (e.g., 80% and 20%,

respectively). The frequency is selected so to produce

a desirable utilization level (e.g., 70%). Similarly, in

our work we control the CPU cores frequencies of a

query processing node using information related to

the query processing activity rather than to the CPU

cores utilization (see Sec. 4). To this end, we build

our approach on top of the acpicpufreqdriver [9].

This driver allows applications to directly manage

the CPU cores frequency, instead of relying on the

operative systems.

2.2 Query processing and dynamic pruning

Web search engines continuously crawl a large

amount of Web pages. This collection of documents

http://www.ijsrcseit.com/

Volume 4, Issue 2 | March-April-2018 | http:// ijsrcseit.com

 53

is then indexed to produce an inverted index [17].

The inverted index is a data structure that maps each

term in the document collection to a posting list, i.e.,

a list of postings which indicates the occurrence of a

term in a document. A posting contains at least the

identifier (i.e., a natural number) of the document

where the term appears and its term frequency, i.e.,

the number of occurrences of the term in that

particular document. The inverted index is usually

compressed [18] and kept in main memory to

increase the performance of the search engine [19].

When a query is submitted to a Web search engine,

it is dispatched to a query processing node. This

retrieves a ranked list of documents that are relevant

for the query, i.e., the top K documents relevant to a

user query, sorted in decreasingorder of relevance

score (e.g., by using the popular BM25 weighting

model [20]). To generate the top K results list, the

processing node exhaustively traverses all the posting

lists relative to the query terms. This is

computationally expensive, since the inverted index

can easily measure tens of gigabytes, so dynamic

pruning techniques are adopted [21], [22]. Such

techniques avoid to evaluate irrelevant documents,

skipping over portions of the posting lists. This

reduces the response time as the systems avoid to

access and decompress portion of the inverted index.

At the same time, these dynamic pruning techniques

are safe-up-to-K, i.e., they produce the same top K

results list returned by an exhaustive traversal of the

posting lists. For such reasons, in this work we apply

dynamic pruning strategies to the processing of

queries.

2.3 Query efficiency predictors

Query efficiency predictors (QEPs) are techniques

that es-timate the execution time of a query before it

is actually processed. Knowing in advance the

execution time of queries permits to improve the

performance of a search engine. Most QEPs exploit

the characteristics of the query and the inverted

index to pre-compute features to be exploited to

estimate the query processing times. For instance,

Macdonald et al. [10] propose to use term-based

features (e.g., the inverse docu-ment frequency of

the term, its maximum relevance score among others)

to predict the execution time of a query. They exploit

their QEPs to implement on-line algorithms to

schedule queries across processing node, in order to

reduce the average query waiting and completion

times. The works [11], [12], instead, address the

problem to whether parallelize or not the processing

of a query. In fact, parallel processing can reduce the

execution time of long-running queries but provides

limited benefits when dealing with short-running

ones. Both the works propose QEPs to detect long-

running queries. The processing of the query is

parallelized only if their QEPs detect the query as a

long-running one. Rather then combining term-

based features, Wu et al. [23] propose to analytically

model the query processing stages and to use such

model to predict the execution time of queries.

In our work, we modify the QEPs described in [10]

to develop our algorithm for reducing the energy

consumption of a processing node while maintaining

low tail latencies.

III. EXISTING SYSTEM

In the following, we introduce the operative scenario

of a query processing node (Sec. 3.1), we formalize

the general minimum-energy scheduling problem

and we shortly present the state-of-the-art algorithm

to solve it offline (Sec. 3.2), and we discuss the issues

of this offline algorithm in our scenario (Sec. 3.3).

3.1 Operative scenario

A query processing node is a physical server

composed by several multi-core processors/CPUs

with a shared memory which holds the inverted

index. The inverted index can be partitioned into

shards and distributed across multiple query

processing nodes. In this work, we focus on reducing

the CPU energy consumption of single query

processing nodes, independently of the adopted

http://www.ijsrcseit.com/

Volume 4, Issue 2 | March-April-2018 | http:// ijsrcseit.com

 54

partition strategy. In the following, we assume that

each query processing node holds an identical replica

of the inverted index [24].

A query server process is executed on top of each of

the CPU core of the processing node (see Figure 1).

All query servers access a shared inverted index held

in main memory to process queries. Each query

server manages a queue, where the incoming queries

are stored. The first query in the queue is processed

as soon as the corresponding CPU core is idle. The

queued queries are processed following the first-

come firstserved policy. The number of queries in a

query server’s queue represents the server load.

Queries arrive to the processing node as a stream S =

{q1, . . .

1. qn}. When a query reaches the processing node it

is dispatched to a query server by a query router. The

query router dispatches an incoming query to the

least loaded query server, i.e., to the server with the

smallest number of enqueued queries. Alternatively,

the query processing node could have a single query

queue and dispatch queries from the queue to idle

query servers. In this work, we use a queue for each

query servers since a single queue will not permit to

take local decisions about the CPU core frequency to

use for the relative query server. A similar queue-

per-core architecture is assumed in [25], to schedule

jobs across CPU cores to minimize the CPU energy

consumption, and in [10]

IV. PROPOSED WORK

We propose the Predictive Energy Saving Online

Scheduling algorithm (PESOS), which considers the

tail latency requirement of queries as an express

parameter. Via the Dynamic Frequency and Voltage

Scaling (DVFS) era, PESOS selects the most suitable

CPU frequency to method a query on a in keeping

with-middle foundation, in order that the CPU

power consumption is reduced even as respecting

required tail latency. The algorithm bases its choice

on query efficiency predictors in place of center

usage. Query performance predictors are strategies to

estimate the processing time of a query before its

processing. In this paper we attention on lowering

the CPU strength consumption of single query

processing nodes, independently of the followed

partition method. A query processing node is a

physical server composed by numerous multi-core

processors/CPUs with a shared memory. A query

server system is achieved on pinnacle of each of the

CPU middle of the processing node. All query servers

get admission to a shared inverted index held in

major reminiscence to method queries.

Figure 1. Structure of the Query Processing Node.

Each query server manages a queue, wherein the

incoming queries are stored. The first query in the

queue is processed as soon because the corresponding

CPU center is idle. The queued queries are processed

following the primary-come first served coverage.

The number of queries in a query server’s queue

represents the server load. Queries arrive to the

processing node as a circulation S = q1. . . qn. When a

query reaches the processing node it's far dispatched

to a query server by a query router. The query router

dispatches an incoming query to the least loaded

query server, i.e., to the server with the smallest

variety of enqueued queries as shown in Fig.1.

Alternatively, the query processing node could have

a single query queue and dispatch queries from the

queue to idle query servers. In this work, we use a

queue for each query servers considering that a single

queue will no longer permit to take nearby selections

approximately the CPU middle frequency to apply

for the relative query server.

C. Root Mean Square Error (RMSE)

http://www.ijsrcseit.com/

Volume 4, Issue 2 | March-April-2018 | http:// ijsrcseit.com

 55

The Root Mean Square Error (RMSE) is an often used

measure of the differentiation among values

predicted by a model & the values actually captured

from the environment that is being modeled. These

individual differentiations are also referred residuals,

& the RMSE provides to aggregate them into a single

measure of predictive power. The RMSE of a

representation prediction with value to the

predictable variable Xmodel is distincted as the square

root of the mean squared error:

RMS

E

 in 1 (X obs , i X

mo del , i) 2

n

 (1)

where Xobs is practical values & Xmodel is modeled

values at time/place i.In this proposed Predictive

Energy Saving Online Scheduling algorithm, we can

record this error for query efficiency predictors.

D. Applying Query Efficiency Prediction to Query

Scheduling

While in popular the primary retrieval performance

degree is the common time required to manner the

queries (common response time), when a move of

queries is acquired by using a search engine, it might

not be possible to start processing a brand new

question as soon because it arrives. Instead, when the

system is busy processing a query, next queries are

queued. Therefore, the real time delay experienced

with the aid of a user whilst waiting for seek

consequences (finishing touch time) is given through

the execution time (response time) of the question,

plus the time the question spent ready to be

processed (ready time). Classically, queued queries

were processed in a FIFO manner. However these

only consequences in minimizing queuing time if

every query has an equal response time. Instead, we

recommend that queues of queries can be scheduled

to execute out of arrival order, by way of deploying

unique scheduling algorithms. In this manner, for

example, short queries may be scheduled among

longer queries, to lessen the mean time put off skilled

through the user populace of the quest engine.

V. CONCLUSIONS

In this paper, we proposed the Predictive Energy

Saving Online Scheduling (PESOS) algorithm. With

regards to Web search engines, PESOS intends to

decrease the CPU en-ergy utilization of an inquiry

handling hub while forcing a required tail inactivity

on the question reaction times. For each question,

PESOS chooses the most minimal conceivable CPU

center recurrence with the end goal that the energy

utilization is diminished and the due dates are

regarded. PESOS chooses the correct CPU center

recurrence abusing two different sorts of question

efficiency indicators (QEPs). The main QEP gauges

the preparing volume of questions. The second QEP

gauges the question handling times under different

center frequencies, given the quantity of postings to

score. Since QEPs can be wrong, amid their

preparation we recorded the root mean square

blunder (RMSE) of the forecasts. In this work, we

proposed to total the RMSE to the genuine forecasts

to repay expectation blunders. We at that point

characterized two conceivable setups for PESOS:

time traditionalist, where forecast rectification is

authorized, and energy preservationist, where QEPs

are left unmodified

VI. REFERENCES

[1]. L. A. Barroso, J. Clidaras, and U. H¨olzle, The

Datacenter as a Computer: An Introduction to

the Design of Warehouse-Scale Machines, 2nd

ed. Morgan & Claypool Publishers, 2013.

[2]. I. Arapakis, X. Bai, and B. B. Cambazoglu,

"Impact of response latency on user behavior in

web search," in Proc. SIGIR, 2014, pp. 103–112.

[3]. The Climate Group for the Global e-

Sustainability Initiative, "Smart 2020: Enabling

the low carbon economy in the information

age," 2008.

http://www.ijsrcseit.com/

Volume 4, Issue 2 | March-April-2018 | http:// ijsrcseit.com

 56

[4]. U.S. Department of Energy, "Best Practices

Guide for Energy-Efficient Data Center

Design." [Online].

[5]. D. C. Snowdon, S. Ruocco, and G. Heiser,

"Power Management and Dynamic Voltage

Scaling: Myths and Facts," in Proc. of

Workshop on Power Aware Real-time

Computing, 2005.

[6]. D. Brodowski, "CPU frequency and voltage

scaling code in the Linux kernel."

[7]. C. Macdonald, N. Tonellotto, and I. Ounis,

"Learning to predict response times for online

query scheduling," in Proc. SIGIR, 2012, pp.

621–630.

[8]. M. Jeon, S. Kim, S.-w. Hwang, Y. He, S.

Elnikety, A. L. Cox, and S. Rixner, "Predictive

parallelization: Taming tail latencies in web

search," in Proc. SIGIR, 2014, pp. 253–262.

[9]. S. Kim, Y. He, S.-w. Hwang, S. Elnikety, and S.

Choi, "Delayeddynamic-selective (dds)

prediction for reducing extreme tail latency in

web search," in Proc. WSDM, 2015, pp. 7–16

[10]. M. Catena, C. Macdonald, and N. Tonellotto,

"Load-sensitive cpu power management for

web search engines," in Proc. SIGIR, 2015, pp.

751–754

AUTHOR DETAILAS

K.HARI KRISHNA his working various Engennring

colleges Having 10years of experience

in the teaching .he is working as an

assistant professor in VIGNAN’S

LARA INSTITUTE OF

TECHNOLOGY &SCIENCE

Vadlamudi, Guntur Dist. His

interested in research areas are Datamining, C,Java

Expert, Hadoop, Dbms, Cobol

 KOSURU ANUSHA RANI she

Currently pursuing MCA in MCA

Department, Vignan’s Lara Institute

Of Technology & Science,

Vadlamudi, Guntur, Andhra

Pradesh, India. she received his

Bachelor of science from

KRISHAN university

http://www.ijsrcseit.com/

