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ABSTRACT 

The emergence of Infrastructure as a Service framework brings new opportunities, that conjointly 

accompanies with new challenges in auto-scaling, resource allocation, and security. A elementary 

challenge underpinning these issues is that the continuous tracking and monitoring of resource usage 

within the system. during this paper, we tend to present ATOM, AN efficient and effective 

framework to automatically track, monitor, ANd orchestrate resource usage in an Infrastructure as a 

Service (IaaS) system that's wide employed in cloud infrastructure. we tend to use novel trailing 

methodology to ceaselessly track vital system usage metrics with low overhead, and develop a 

Principal part Analysis (PCA) primarily based approach to ceaselessly monitor and automatically 

notice anomalies supported the approximated trailing results. we tend to show a way to dynamically 

set the trailing threshold supported the detection results, and more, a way to regulate trailing rule to 

confirm its optimality beneath dynamic workloads. Lastly, once potential anomalies square measure 

known, we tend to use introspection tools to perform memory forensics on VMs guided  by analyzed 

results from trailing and monitoring to spot malicious behavior within a VM. we tend to demonstrate 

the extensibility of ATOM through virtual machine (VM) bunch. The performance of our framework 

is evaluated in AN open supply IaaS system. 

Keywords :  Infrastructure as a Service, cloud, tracking, monitoring, anomaly detection, virtual 

machine introspection 

INTRODUCTION 

Atom is a free and open-

source[4][5] text and source code 

editor for macOS, Linux, and Microsoft 

Windows[6] with support for plug-ins written 

in Node.js, and embedded Git Control, 

developed by GitHub. Atom is a desktop 

application built using web technologies.[7] Most 

of the extending packages have free software 

licenses and are community-built and 

maintained.[8] Atom is based 

on Electron (formerly known as Atom Shell),[9] a 

framework that enables cross-platform desktop 

applications 

using Chromium and Node.js.[10][11] It is written 

in CoffeeScript and Less.[12] It can also be used as 

an integrated development 

environment (IDE).[13][14][15][16] Atom was released 

from beta, as version 1.0, on 25 June 2015.[17] Its 

developers call it a "hackable text editor for the 

21st Century".[18] 
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Security is another paramount system. For 

example, it was reported saries attacked Amazon 

cloud by service (DDoS) bots on user VMs by in 

Elasticsearch [2]. Resource usage insights to 

address security concerns. to constantly monitor 

resource usage not only for resource allocation, 

but in the system. Until now, the best practices 

for mitigating DDoS and other attacks in AWS 

include using CloudWatch to create simple 

threshold alarms on monitored metrics and alert 

users for potential attacks [3]. In our work we 

show how to detect the anomalies automatically 

while saving users the trouble on setting magic 

threshold values. 

These observations illustrate that a fundamental 

challenge underpinning several important 

problems in an IaaS system is the continuous 

tracking and monitoring of resource usage in the 

system. Furthermore, several applications (e.g., 

security) also need intelligent and automated 

orchestration of system resources, by going 

beyond passive tracking and monitoring, and 

introducing auto-detection of abnormal 

behavior in the system, and active introspection 

and correction once anomaly has been identified 

and confirmed. This motivates us to design and 

implement ATOM, an efficient and effective 

framework to automatically track, orchestrate, 

and monitor resource usage in an IaaS system. 

 

Fig. 1. A simplified architecture of Eucalyptus. 

A motivating example Eucalyptus is a paid and 

open-source computer software for building 

Amazon Web Services (AWS)-compatible 

private and hybrid cloud computing 

environments, originally developed by the 

company Eucalyptus Systems. Eucalyptus is an 

acronym for Elastic Utility Computing 

Architecture for Linking Your Programs To 

Useful Systems.[2] Eucalyptus enables pooling 

compute, storage, and network resources that 

can be dynamically scaled up or down as 

application workloads change.[3] Mårten Mickos 

was the CEO of Eucalyptus.[4] In September 

2014, Eucalyptus was acquired by Hewlett-
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Packard and then maintained by DXC 

Technology. 

Eucalyptus provides an AWS-like service called 

CloudWatch.CloudWatch is able to monitor 

resource usage of each VM. To reduce overhead, 

such data are only collected from each VM at 

every minute, and then reported to the CLC 

through a CC. Clearly,gathering resource usage 

in real time introduces overhead in the system 

(e.g., communication overhead from a NC to the 

CLC). When there are plenty of VMs to 

monitor, the problem becomes even worse and 

will bring significant overhead to the 

system.CloudWatch addresses this problem by 

collecting measurements only once every 

minute, but this provides only a discrete, 

sampled view of the system status and is not 

sufficient to providing continuous 

understanding and protection of the system. 

Another limitation in existing approaches like 

CloudWatch is that they only do passive 

monitoring. No active online resource 

orchestration is in place towards detecting 

system anomalies, potential threats and attacks. 

We observe that, e.g., in the aforementioned 

DDoS attack to Amazon cloud, alarming signals 

can be learned automatically from resource 

usage data, which are readily to analyze without 

any pre-processing like system logs [6]. Active 

online resource monitoring and orchestration is 

very useful in achieving a more secure and 

reliable system. Active online resource 

monitoring gives us the opportunities to trigger 

VM introspection to debug the system and 

figure out what has possibly gone wrong. The 

introspection into VMs then allows to 

orchestrate resource usage and allocation in the 

IaaS system to achieve a more secure system 

and/or better performance. Note that VM 

introspection is expensive. Without continuous 

tracking and online monitoring and 

orchestration, it is almost impossible to figure 

out when to do VM introspection and what 

specific target to introspect in a host VM. Our 

goal is to automate this process and trigger VM 

introspection only when needed. We refer to 

this process as resource orchestration. 

ATOM introduces an online tracking module 

that runs at NC and continuously tracks various 

performance metrics and resource usage values 

of all VMs. The CLC is denoted as the tracker, 

and the NCs are denoted as the observers. The 

goal is to replace the sampled view at the CLC 

with a continuous understanding of system 

status, with minimum overhead. 

ATOM then uses an automated monitoring 

module that continuously monitors the resource 

usage data reported by the online tracking 

module. The goal is to detect anomaly by mining 

the resource usage data. This is especially helpful 

for detecting attacks that could cause changes in 

resource usage, for example, one VM consumes 

all available resources and starves all other VMs 

running on the same physical computer [7]. The 

baseline for online monitoring is to simply 

define a threshold value for any metric of 

interest. Clearly, this approach is not very 

effective against dynamic and complex attacks 

and anomalies. ATOM uses a dynamic online 

monitoring method that is developed based on 

PCA. We design a PCA-based method that 

continuously analyzes the dominant subspace 
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defined by the measurements from the  tracking 

module, and automatically raises an alarm 

whenever a shift in the dominant subspace has 

been detected. Even though PCA-based methods 

have been used for anomaly detection in various 

contexts, a new challenge in our setting is to 

cope with approximate measurements produced 

by online tracking, and design methods that are 

able to automatically adapting to and adjusting 

the tracking errors.  

Lastly, virtual machine introspection (VMI) is 

used to detect and identify malicious behavior 

inside a VM. VMI techniques such as analyzing 

VM memory space tends to be of great cost. If 

we don’t know where and when an attack might 

have happened,we will need to go through the 

entire memory constantly, which is clearly 

expensive, especially if VMs to be analyzed are 

so many. ATOM provides two options here. The 

first option is to set a threshold for each resource 

usage measure (the baseline as discussed above), 

and we consider there may be an anomaly if the 

reported value is beyond (or below) the 

threshold for that measure and trigger a VMI. 

This is the method that existing systems like 

AWS and Eucalyptus have adopted for auto 

scaling tasks. The second option is to use the 

online monitoring method in the monitoring 

module to automatically detect anomaly and 

trigger a VMI, as well as guiding the 

introspection to specific regions in the VM 

memory space based on the data from online 

monitoring and tracking. We denote the second 

method as orchestration. 

That said, note that ATOM is an end-to-end 

framework that integrates online tracking, 

online monitoring, and orchestration (for VM 

introspection) into one framework, whereas 

UBL focuses on anomaly detection in 

performance data without the integration of 

tracking and orchestration. Hence, UBL is 

“equivalent ” to the monitoring component in 

ATOM. 

RELATED WORK 

To the best of our knowledge, none of existing 

IaaS platforms is able to provide continuous 

tracking, monitoring, and orchestration of 

system resource usage. Furthermore, none of 

them is able to do intelligent, automated 

monitoring for a large number of VMs and carry 

out orchestration inside a VM. 

Cloud monitoring. Most existing IaaS systems 

follow the general, hierarchical architecture as 

shown in Figure 1. Inside these sys-tems, there 

are imperative needs for the controller to 

continuously collect resource usage data and 

monitor system health. AWS [1] and Eucalyptus 

[4], [5] use CloudWatch [27] service to monitor 

VMs and other components in some fixed 

intervals, e.g., every minute. This provides cloud 

users a system-wide visibility into resource 

utilization, and allows users to set some simple 

threshold based alarms to monitor and ensure 

system health. OpenStack [28] is developing a 

project called Ceilometer [29], to collect 

resources utilization measurements. However, 

these approaches only provide a discrete, 

sampled view of the system. Several emerging 

startup companies such as DATADOG [30] and 

librato [31] could monitor in a more fine-

grained granularity, provided the required 

softwares are installed. However, this inevitably 
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introduces more network overhead to the cloud, 

which becomes worse when the monitored 

infrastructure scales up. On the contrary, ATOM 

significantly reduces the network overhead by 

utilizing the optimal online tracking algorithm, 

while providing just about the same amount of 

information. Furthermore, all these cloud 

monitoring services offer very limited capability 

in monitoring and ensuring system health. UBL 

[8] uses collected VM usage data to train Self-

Organizing Maps for anomaly prediction, which 

serves a similar purpose to ATOM’s monitoring 

component. Besides the detailed comparison in 

Section 1, SOM requires an explicit training 

stage and needs to be trained by normal data, 

while PCA could identify what is normal 

directly from the history data provided normal 

data is the majority. Unlike UBL and ATOM 

which only require VM usage data, PerfCompass 

collects system call traces and checks the 

execution units being affected [32] to identify 

whether a VM performance anomaly is caused 

by internal fault like software bugs, or from an 

external source such as co-existing VMs. 

Astrolabe [33] is a monitoring service for 

distributed re-sources, to perform user-defined 

aggregation (e.g. number of nodes that satisfy 

certain property) on-the-fly for the host hi-

erarchy. It is intended as a “summarizing 

mechanism”. Similar to Astrolabe, SDIMS [34] is 

another system that aggregates information 

about large-scale networked systems with better 

scal-ability, flexibility, and administrative 

isolation. Ganglia [35] is a general-purpose 

scalable distributed monitoring system for high 

performance computing systems which also has 

a hierarchical design to monitor and aggregate 

all the nodes and has been used in many 

clusters. These efforts are similar to the 

CloudWatch module currently used in 

AWS/Eucalyptus, and they reduce monitoring 

overhead by simple aggregations. While the 

purpose of ATOM’s tracking module is to reduce 

data transfer, but it does so using online tracking 

instead of simply aggregating which delivers 

much more fine-grained information. 

STAR [36] is a hierarchical algorithm for 

scalable aggregation that reduces 

communication overhead by carefully 

distributing the allowed error budgets. It suites 

systems like SDIMS [34] well. InfoEye [37] is a 

model-based information management system 

for large-scale service overlay networks through 

a set of monitoring sensors deployed on different 

overlay nodes with reduced overhead achieved 

by ad-hoc conditions filters. InfoTrack 

[38] is a monitoring system that is similar to 

ATOM’s tracking module, in that it tries to 

minimize continuous monitoring cost with most 

information precision preserved, by leveraging 

temporal and spatial correlation of monitored 

attributes, while ATOM uti-lizes an optimal 

online tracking algorithm that is proved to 

achieve the best saving in network cost without 

any prior knowledge on the data. MELA [39] is a 

monitoring framework for cloud service which 

collects different dimensions of data tailored for 

analyzing cloud elasticity purpose (e.g. scale up 

and scale down). ATOM may use MELA to 

collect, track, and monitor different types of 

metrics than those already available through 

CloudWatch. 
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Cloud security. IaaS system also brings us a new 

set of secu-rity problems. Leading cloud 

providers have developed advanced mechanism 

to ensure the security of their IaaS systems. 

AWS [40] has many built-in security features 

such as firewalls, encrypted storage and security 

logs. OpenStack uses a security component 

called Keystone [41] to do authentication and 

authorization. It also has security rules for 

network communication in its network 

component Neutron [42]. Other IaaS platforms 

have similar se-curity solutions, which are 

mainly firewalls and security groups. 

Nevertheless, it is still possible that hackers 

could bypass known security policies, or cloud 

users may accidentally run some mali-cious 

software. It is thus critical to be able to detect 

such anomaly in near real-time to avoid leaving 

hackers plenty of time to cause significant 

damage. Hence we need a monitoring solution 

that could actively detect anomaly, and identify 

potentially malicious behavior over a large 

number of VM instances. AWS recently adopts 

its CloudWatch service for DDoS attacks [3], but 

it re-quires user to check historical data and set a 

”magic value” as the threshold manually, which 

is unrealistic if user’s underlying workloads 

change frequently. 

In contrast, ATOM could automatically learn 

the normal behavior from previous monitored 

data, and detect more complex attacks besides 

DDoS attacks using PCA. PCA has been widely 

used to detect anomaly in network traffic 

volume in backbone networks [12], [13], [17], 

[43], [44], [45]. As we have argued in Section 

4.1, adapting a PCA-based approach to our 

setting has not been studied before and 

presented significant new challenges. 

The security challenges in IaaS system were 

analyzed in [7], [46], [47], [48]. Virtual machine 

attacks is considered a major security threat. 

ATOM’s introspection component leverages 

existing open source VMI tools such as Stackdb 

[10] and Volatility [18] to pinpoint the anomaly 

to the exact process. 

VMI is a well-known method for ensuring VM 

security [49], [50], [51], [52]. It has also been 

studied for IaaS systems [53], [54], [55]. 

However, to constantly secure VM using VMI 

tech-nique, the entire VM memory needs to be 

traversed and analyzed periodically. It may also 

require the VM to be suspended in order to gain 

access to VM memory. Blacksheep [19] is such a 

system that detects rootkit by dumping and 

comparing groups of similar machines. Though 

the performance overhead is claimed to be 

acceptably low to support real-time monitoring, 

clearly user programs will be negatively affected. 

Another solution was suggested [56] for cloud 

users to verify the integrity of their VMs. 

However, this is not an “active detection and 

reaction” system. In contrast, ATOM enables 

triggering VMI only when a potential attack is 

identified, and it also helps locate the relevant 

memory region to analyze and introspect much 

more effectively and efficiently using its 

orchestration component. 
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PROPOSE SYSTEM 

THE ATOM FRAMEWORK 

 

Figure 2  the ATOM framework 

CC and one NC are shown in this example. 

ATOM adds three components to an IaaS 

system like AWS and Eucalyptus: 

 

 

(1) Tracking component: ATOM adapts the 

optimal online tracking algorithm for one-

dimension online tracking inside the 

monitoring service on NCs. This 

dramatically reduces the over-head used to 

monitor cloud resources and enables 

continuous measurements to CC and CLC; 

(2) Monitoring component (anomaly 

detection): ATOM adds this component in 

CLC to analyze tracking results by the 

tracking component, which provides 

continuous resource usage data in real 

time. It uses a modified PCA method to 

continuously track the divided subspace, 

as defined by the multi-dimensional values 

from the tracking results, and 

automatically detect anomaly by identi-

fying notable shift in the interesting 

subspace. It also generates anomaly 

information for further analysis by the 

orchestration com-ponent when this 

happens. The monitoring component also 

adjusts the tracking threshold from the 

tracking component dynamically online 

based on the data trends and a desired false 

alarm rate. 

 

(3) Orchestration component (introspection 

and debugging): when a potential anomaly 

is identified by the monitoring compo-

nent, an INTROSPECT request along with 

anomaly information is sent to the 

orchestration component on NC, in which 

VMI tools (such as LibVMI [9]) and VM 

debugging tools (such as StackDB [10]) are 

used to identify the anomalous behavior 

inside a VM and raise an alarm to cloud 

users for further analysis. 

 

ORCHESTRATION COMPONENT 

 

The monitoring component in Section 4 detects 

the abnormal state and identifies which 

measurement on which VM might be respon-

sible. In this section, we describe how 

orchestration component is able to 

automatically mitigate the malicious behavior 

after an anomaly is detected. 
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Modern IaaS cloud vendors offer services 

mostly in the form of VMs, which makes it 

critical to ensure VM security in order to 

attract more customers. VMI technique has 

been widely studied to introspect VM for 

security purpose. There are also several popular 

open source general-purpose VMI tools such as 

LibVMI [9], Volatility [18], and StackDB [10], 

for researchers to explore and develop more 

sophisticated applications. LibVMI has many 

basic APIs that support memory read and write 

on live memory. Volatility itself supports 

memory forensics on a VM memory snapshot 

file, and it has many Linux plugins that are 

ready to use. StackDB is designed to be a multi-

level debugger, while also serves well as a 

memory-forensics tool. Other more 

sophisticated techniques developed for special-

purpose VMI anomaly detection are generally 

based on these tools. Blacksheep [19], for 

instance, utilizes Volatility and specifically 

developed plug-ins to imple-ment a distributed 

system for detecting anomalies inside VMs 

among groups of similar machines. However, as 

most other VMI strategies to secure VMs, it 

needs to dump the whole memory space of the 

target VM, and then analyze each piece, 

typically by comparing with what’s defined a 

“normal” state. Thus to protect VMs in real 

time, the whole memory space needs to be 

analyzed constantly, introducing much 

overhead into the production system. 

ATOM implements its orchestration 

component based on Volatility (with LibVMI 

plug-in for live introspection) and StackDB. A 

crucial difference with other systems is that, 

ATOM only introspects the VM when an 

anomaly happens, and only on the relevant 

memory space of the suspicious VMs. The 

monitoring component in ATOM serves as a 

trigger to inform VMI tools when and where to 

do introspection. The anomalies are found by 

analyzing previously monitored resource usage 

data, in monitoring component, which is much 

more lightweight than analyzing the whole 

memory space. Then the metrics identification 

process in monitoring component could locate 

which dimensions are suspi-cious, indicating 

the relevant metrics on some particular VMs. 

This information is sent to orchestration 

component along with a VMI request, which 

then only introspects the relevant memoy
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Fig. 3. Memory space introspected by ATOM. 

 

After the orchestration component identifies 

potential abnor-mal processes, an alarm is raised 

with associated information identified by VMI 

tools. The alarm and such information are 

provided to the VM user. If user confirms this as 

an abnormal behavior, ATOM is able to 

terminate the malicious processes inside a VM 

instance by using tools like StackDB [10]. 

StackDB could be used to debug, inspect, 

modify, and analyze the behavior of running 

programs inside a VM instance. To kill a process, 

it first finds the task_struct object of the running 

process using process name or id, and then 

passes in SIGKILL signal. Next time the process 

is being scheduled, it is killed immediately. 

 

Although the anomalies that could be 

detected by ATOM is limited compared with 

other systems which analyze the whole memory 

space, we argue the framework of ATOM could 

be easily extended to detect more complex 

attacks. First, more metrics could be easily added 

to monitor for each VM. Also, many other auto-

debugging tools could be developed, which are 

useful to find various kinds of attacks and 

perform different desirable actions. 

 

Note that killing the identified, potentially 

malicious process is just one possible choice 

provided by ATOM, which is performed only if 

user agrees to (ATOM is certainly able to 

automate this as well if desired). Alternatives 

could be to terminate the network connections 

or to close file handles. A more sophisticated 

way is to study a rich dataset of known attacks 

(e.g., Exploits Database) and design rule-based 

approaches to mitigate attacks based on different 

patterns. We refer these active actions, together 

with introspection, as ATOM’s orchestration 

module. Orchestration in ATOM can be greatly 
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customized to suite the needs for different tasks, 

such as identification of different attacks, and 

dynamic resource allocation in an IaaS system. 

VM CLUSTERING 

ATOM enables a continuous understanding of 

the VMs in an IaaS system. In addition to 

anomaly detection, this framework is also useful 

for many other decision making and analytics 

applications. Hence, in addition to using a PCA-

based approach in the monitoring component, 

we will demonstrate that it is possible to design 

and implement a VM clustering module to be 

used in the monitoring component. 

 

The objective of VM clustering is to cluster a 

set of VMs into different clusters so that VMs 

with similar workload characteris-tics end up in 

the same group. This operation assists making 

load balancing decisions, as well as developing 

customized, fine-tuned monitoring modules for 

each cluster. For instance, a cloud provider  

 

may want to evenly distribute the VMs having 

similar resource usage patterns to different 

physical nodes, in order to make sure the 

physical resources are fully utilized and fewer 

VMs may suffer from resource starvation. In 

another example, we may want to use different 

anomaly detection techniques for VMs running 

a database server workload than those running a 

web server. 

 

The basic idea of our proposed approach is as 

follows. The monitoring component in ATOM, 

using its PCA-based approach, transforms the 

original coordinates to a new coordinate system 

where the principal components (PCs) are 

ordered by the amount of variations on each 

direction (as explained in Figure 3). Thus, if two 

VMs share similar workloads, the directions of 

the corre-sponding PCs between the two should 

also be similar. That said, 

 

Step 1. On CLC, a data matrix for each VM is 

maintained, where the columns are metric types 

and rows are time instances (i.e., a t d0 matrix for 

each VM with a sliding window of t), and is 

updated over time. 

 

Step 2. ATOM performs a PCA on each VM 

data matrix without standardization; since for 

clustering purposes, not only the variations on 

each direction is important, but also the average 

usage on each dimension. For example, a VM 

having a disk usage that oscillates between 

10,000 and 20,000 bytes is obviously not the 

same as one having oscillation between 100 and 

200 bytes on the same dimension; whereas a 

standardization procedure which first performs 

mean-center and then normalization will make 

the two oscillations look similar.This step yields 

a set of PCs for each VM. The direction of each 

PC is denoted by the corresponding eigen vector 

while the variation is shown by the associated 

eigen value. 

Step 3. Suppose VM1 has eigen vectors 

(v11;v12;:::) and corresponding eigen values 

(l11;l12;:::), while VM2 has (v21;v22;:::) and 

(l21;l22;:::). We measure the distance be-tween 

two directions using cosine distance; defined as 

(1 cosine similarity). Intuitively, the bigger the 

angle between two directions (the less similar 

they are), the smaller their cosine similarity is, 

hence the larger the cosine distance becomes. 
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Finally, the distance between the two VMs is 

defined as: 

  
of each corresponding pair of eigen vectors from 

VM1 and VM2, weighted by the difference of 

the corresponding eigen values to ensure that 

the variations do not differ a lot. 

 

Step 4. Using VMdist as the distance measure 

between any two VMs, we use DBSCAN [20] to 

cluster similar VMs together. DBSCAN is a 

threshold-based (aka density based) clustering 

algorithm which requires two parameters: e 

which is the density threshold, and minPts 

which is the number of minimum points to form 

a cluster. DBSCAN expands a cluster from an 

un-visited data point towards all its neighboring 

points provided the distance is within e, and 

then recursively expands from each of the 

neighboring point. Points are marked as an 

outlier if the number of points in their cluster is 

fewer than minPts. Compared with other 

popular clustering methods like k-means, 

density-based clustering algorithm does not 

require the prior-knowledge on the number of 

clusters, neither does it need to iteratively 

compute an explicit “centroid” and re-cluster at 

every iteration. By default, ATOM sets 

minPts=10, and computes the thresh-old value e 

using a sampling based approach. More specifi-

cally, we randomly select n pairs of VMs and 

compute their VMdist. We sort the n VMdist 

values, and set e = VMdisti if VMdisti+1 > 5 

VMdisti. The intuition is that for any point, the  

distance to a point in a different cluster is much 

longer than the distance to a point in the same 

cluster, and we want to find a large enough 

“inner cluster” distance and use it as the 

threshold value e to determine whether two 

points belong to the same cluster. 

 

CONCLUSION 

 

We exhibit the ATOM-framework that can be 

effectively incorporated into a standard IaaS 

framework to give mechanized, constant 

tracking, monitoring, and orchestration of 

framework asset use in about ongoing. ATOM is 

to a great degree valuable for abnormality 

identification, auto-scaling, and dynamic asset 

designation and load adjusting in IaaS 

frameworks. Intriguing future work incorporates 

expanding ATOM for more advanced asset 

orchestration and joining the barrier against 

considerably more intricate assaults in ATOM. 
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