
Volume 4, Issue 2 | March-April-2018 | http:// ijsrcseit.com

CSEIT1833614 | Received : 01 April 2018 | Accepted : 15 April 2018 | March-April-2018 [(4) 2 : 71-76]

International Journal of Scientific Research in Computer Science, Engineering and Information Technology

© 2018 IJSRCSEIT | Volume 4 | Issue 2 | ISSN : 2456-3307

71

ATOM : Efficient Tracking, Monitoring, and Orchestration of Cloud

Resources
K Sandhya Rani *1, Kunta Srinu2

1*sandnyakaviti@gmail.com,srinukunta78gmail.com

ABSTRACT

The emergence of Infrastructure as a Service framework brings new opportunities, that conjointly

accompanies with new challenges in auto-scaling, resource allocation, and security. A elementary

challenge underpinning these issues is that the continuous tracking and monitoring of resource usage

within the system. during this paper, we tend to present ATOM, AN efficient and effective

framework to automatically track, monitor, ANd orchestrate resource usage in an Infrastructure as a

Service (IaaS) system that's wide employed in cloud infrastructure. we tend to use novel trailing

methodology to ceaselessly track vital system usage metrics with low overhead, and develop a

Principal part Analysis (PCA) primarily based approach to ceaselessly monitor and automatically

notice anomalies supported the approximated trailing results. we tend to show a way to dynamically

set the trailing threshold supported the detection results, and more, a way to regulate trailing rule to

confirm its optimality beneath dynamic workloads. Lastly, once potential anomalies square measure

known, we tend to use introspection tools to perform memory forensics on VMs guided by analyzed

results from trailing and monitoring to spot malicious behavior within a VM. we tend to demonstrate

the extensibility of ATOM through virtual machine (VM) bunch. The performance of our framework

is evaluated in AN open supply IaaS system.

Keywords : Infrastructure as a Service, cloud, tracking, monitoring, anomaly detection, virtual

machine introspection

INTRODUCTION

Atom is a free and open-

source[4][5] text and source code

editor for macOS, Linux, and Microsoft

Windows[6] with support for plug-ins written

in Node.js, and embedded Git Control,

developed by GitHub. Atom is a desktop

application built using web technologies.[7] Most

of the extending packages have free software

licenses and are community-built and

maintained.[8] Atom is based

on Electron (formerly known as Atom Shell),[9] a

framework that enables cross-platform desktop

applications

using Chromium and Node.js.[10][11] It is written

in CoffeeScript and Less.[12] It can also be used as

an integrated development

environment (IDE).[13][14][15][16] Atom was released

from beta, as version 1.0, on 25 June 2015.[17] Its

developers call it a "hackable text editor for the

21st Century".[18]

mailto:sandnyakaviti@gmail.com
https://en.wikipedia.org/wiki/Free_and_open-source_software
https://en.wikipedia.org/wiki/Free_and_open-source_software
https://en.wikipedia.org/wiki/Atom_(text_editor)#cite_note-lifehacker-4
https://en.wikipedia.org/wiki/Atom_(text_editor)#cite_note-lifehacker-4
https://en.wikipedia.org/wiki/Text_editor
https://en.wikipedia.org/wiki/Source_code_editor
https://en.wikipedia.org/wiki/Source_code_editor
https://en.wikipedia.org/wiki/MacOS
https://en.wikipedia.org/wiki/Linux
https://en.wikipedia.org/wiki/Microsoft_Windows
https://en.wikipedia.org/wiki/Microsoft_Windows
https://en.wikipedia.org/wiki/Atom_(text_editor)#cite_note-6
https://en.wikipedia.org/wiki/Plug-in_(computing)
https://en.wikipedia.org/wiki/Node.js
https://en.wikipedia.org/wiki/Git
https://en.wikipedia.org/wiki/GitHub
https://en.wikipedia.org/wiki/Atom_(text_editor)#cite_note-7
https://en.wikipedia.org/wiki/Free_software_license
https://en.wikipedia.org/wiki/Free_software_license
https://en.wikipedia.org/wiki/Atom_(text_editor)#cite_note-8
https://en.wikipedia.org/wiki/Electron_(software_framework)
https://en.wikipedia.org/wiki/Atom_(text_editor)#cite_note-9
https://en.wikipedia.org/wiki/Chromium_(web_browser)
https://en.wikipedia.org/wiki/Node.js
https://en.wikipedia.org/wiki/Atom_(text_editor)#cite_note-10
https://en.wikipedia.org/wiki/Atom_(text_editor)#cite_note-10
https://en.wikipedia.org/wiki/CoffeeScript
https://en.wikipedia.org/wiki/Less_(stylesheet_language)
https://en.wikipedia.org/wiki/Atom_(text_editor)#cite_note-12
https://en.wikipedia.org/wiki/Integrated_development_environment
https://en.wikipedia.org/wiki/Integrated_development_environment
https://en.wikipedia.org/wiki/Atom_(text_editor)#cite_note-atom-ide-13
https://en.wikipedia.org/wiki/Atom_(text_editor)#cite_note-atom-ide-13
https://en.wikipedia.org/wiki/Atom_(text_editor)#cite_note-juno-15
https://en.wikipedia.org/wiki/Atom_(text_editor)#cite_note-juno-15
https://en.wikipedia.org/wiki/Atom_(text_editor)#cite_note-17
https://en.wikipedia.org/wiki/Atom_(text_editor)#cite_note-18

Volume 4, Issue 2 | March-April-2018 | http:// ijsrcseit.com

CSEIT1833614 | Received : 01 April 2018 | Accepted : 15 April 2018 | March-April-2018 [(4) 2 : 71-76]

International Journal of Scientific Research in Computer Science, Engineering and Information Technology

© 2018 IJSRCSEIT | Volume 4 | Issue 2 | ISSN : 2456-3307

71

Security is another paramount system. For

example, it was reported saries attacked Amazon

cloud by service (DDoS) bots on user VMs by in

Elasticsearch [2]. Resource usage insights to

address security concerns. to constantly monitor

resource usage not only for resource allocation,

but in the system. Until now, the best practices

for mitigating DDoS and other attacks in AWS

include using CloudWatch to create simple

threshold alarms on monitored metrics and alert

users for potential attacks [3]. In our work we

show how to detect the anomalies automatically

while saving users the trouble on setting magic

threshold values.

These observations illustrate that a fundamental

challenge underpinning several important

problems in an IaaS system is the continuous

tracking and monitoring of resource usage in the

system. Furthermore, several applications (e.g.,

security) also need intelligent and automated

orchestration of system resources, by going

beyond passive tracking and monitoring, and

introducing auto-detection of abnormal

behavior in the system, and active introspection

and correction once anomaly has been identified

and confirmed. This motivates us to design and

implement ATOM, an efficient and effective

framework to automatically track, orchestrate,

and monitor resource usage in an IaaS system.

Fig. 1. A simplified architecture of Eucalyptus.

A motivating example Eucalyptus is a paid and

open-source computer software for building

Amazon Web Services (AWS)-compatible

private and hybrid cloud computing

environments, originally developed by the

company Eucalyptus Systems. Eucalyptus is an

acronym for Elastic Utility Computing

Architecture for Linking Your Programs To

Useful Systems.[2] Eucalyptus enables pooling

compute, storage, and network resources that

can be dynamically scaled up or down as

application workloads change.[3] Mårten Mickos

was the CEO of Eucalyptus.[4] In September

2014, Eucalyptus was acquired by Hewlett-

Volume 4, Issue 2 | March-April-2018 | http:// ijsrcseit.com

CSEIT1833614 | Received : 01 April 2018 | Accepted : 15 April 2018 | March-April-2018 [(4) 2 : 71-76]

International Journal of Scientific Research in Computer Science, Engineering and Information Technology

© 2018 IJSRCSEIT | Volume 4 | Issue 2 | ISSN : 2456-3307

71

Packard and then maintained by DXC

Technology.

Eucalyptus provides an AWS-like service called

CloudWatch.CloudWatch is able to monitor

resource usage of each VM. To reduce overhead,

such data are only collected from each VM at

every minute, and then reported to the CLC

through a CC. Clearly,gathering resource usage

in real time introduces overhead in the system

(e.g., communication overhead from a NC to the

CLC). When there are plenty of VMs to

monitor, the problem becomes even worse and

will bring significant overhead to the

system.CloudWatch addresses this problem by

collecting measurements only once every

minute, but this provides only a discrete,

sampled view of the system status and is not

sufficient to providing continuous

understanding and protection of the system.

Another limitation in existing approaches like

CloudWatch is that they only do passive

monitoring. No active online resource

orchestration is in place towards detecting

system anomalies, potential threats and attacks.

We observe that, e.g., in the aforementioned

DDoS attack to Amazon cloud, alarming signals

can be learned automatically from resource

usage data, which are readily to analyze without

any pre-processing like system logs [6]. Active

online resource monitoring and orchestration is

very useful in achieving a more secure and

reliable system. Active online resource

monitoring gives us the opportunities to trigger

VM introspection to debug the system and

figure out what has possibly gone wrong. The

introspection into VMs then allows to

orchestrate resource usage and allocation in the

IaaS system to achieve a more secure system

and/or better performance. Note that VM

introspection is expensive. Without continuous

tracking and online monitoring and

orchestration, it is almost impossible to figure

out when to do VM introspection and what

specific target to introspect in a host VM. Our

goal is to automate this process and trigger VM

introspection only when needed. We refer to

this process as resource orchestration.

ATOM introduces an online tracking module

that runs at NC and continuously tracks various

performance metrics and resource usage values

of all VMs. The CLC is denoted as the tracker,

and the NCs are denoted as the observers. The

goal is to replace the sampled view at the CLC

with a continuous understanding of system

status, with minimum overhead.

ATOM then uses an automated monitoring

module that continuously monitors the resource

usage data reported by the online tracking

module. The goal is to detect anomaly by mining

the resource usage data. This is especially helpful

for detecting attacks that could cause changes in

resource usage, for example, one VM consumes

all available resources and starves all other VMs

running on the same physical computer [7]. The

baseline for online monitoring is to simply

define a threshold value for any metric of

interest. Clearly, this approach is not very

effective against dynamic and complex attacks

and anomalies. ATOM uses a dynamic online

monitoring method that is developed based on

PCA. We design a PCA-based method that

continuously analyzes the dominant subspace

Volume 4, Issue 2 | March-April-2018 | http:// ijsrcseit.com

CSEIT1833614 | Received : 01 April 2018 | Accepted : 15 April 2018 | March-April-2018 [(4) 2 : 71-76]

International Journal of Scientific Research in Computer Science, Engineering and Information Technology

© 2018 IJSRCSEIT | Volume 4 | Issue 2 | ISSN : 2456-3307

71

defined by the measurements from the tracking

module, and automatically raises an alarm

whenever a shift in the dominant subspace has

been detected. Even though PCA-based methods

have been used for anomaly detection in various

contexts, a new challenge in our setting is to

cope with approximate measurements produced

by online tracking, and design methods that are

able to automatically adapting to and adjusting

the tracking errors.

Lastly, virtual machine introspection (VMI) is

used to detect and identify malicious behavior

inside a VM. VMI techniques such as analyzing

VM memory space tends to be of great cost. If

we don’t know where and when an attack might

have happened,we will need to go through the

entire memory constantly, which is clearly

expensive, especially if VMs to be analyzed are

so many. ATOM provides two options here. The

first option is to set a threshold for each resource

usage measure (the baseline as discussed above),

and we consider there may be an anomaly if the

reported value is beyond (or below) the

threshold for that measure and trigger a VMI.

This is the method that existing systems like

AWS and Eucalyptus have adopted for auto

scaling tasks. The second option is to use the

online monitoring method in the monitoring

module to automatically detect anomaly and

trigger a VMI, as well as guiding the

introspection to specific regions in the VM

memory space based on the data from online

monitoring and tracking. We denote the second

method as orchestration.

That said, note that ATOM is an end-to-end

framework that integrates online tracking,

online monitoring, and orchestration (for VM

introspection) into one framework, whereas

UBL focuses on anomaly detection in

performance data without the integration of

tracking and orchestration. Hence, UBL is

“equivalent ” to the monitoring component in

ATOM.

RELATED WORK

To the best of our knowledge, none of existing

IaaS platforms is able to provide continuous

tracking, monitoring, and orchestration of

system resource usage. Furthermore, none of

them is able to do intelligent, automated

monitoring for a large number of VMs and carry

out orchestration inside a VM.

Cloud monitoring. Most existing IaaS systems

follow the general, hierarchical architecture as

shown in Figure 1. Inside these sys-tems, there

are imperative needs for the controller to

continuously collect resource usage data and

monitor system health. AWS [1] and Eucalyptus

[4], [5] use CloudWatch [27] service to monitor

VMs and other components in some fixed

intervals, e.g., every minute. This provides cloud

users a system-wide visibility into resource

utilization, and allows users to set some simple

threshold based alarms to monitor and ensure

system health. OpenStack [28] is developing a

project called Ceilometer [29], to collect

resources utilization measurements. However,

these approaches only provide a discrete,

sampled view of the system. Several emerging

startup companies such as DATADOG [30] and

librato [31] could monitor in a more fine-

grained granularity, provided the required

softwares are installed. However, this inevitably

Volume 4, Issue 2 | March-April-2018 | http:// ijsrcseit.com

CSEIT1833614 | Received : 01 April 2018 | Accepted : 15 April 2018 | March-April-2018 [(4) 2 : 71-76]

International Journal of Scientific Research in Computer Science, Engineering and Information Technology

© 2018 IJSRCSEIT | Volume 4 | Issue 2 | ISSN : 2456-3307

71

introduces more network overhead to the cloud,

which becomes worse when the monitored

infrastructure scales up. On the contrary, ATOM

significantly reduces the network overhead by

utilizing the optimal online tracking algorithm,

while providing just about the same amount of

information. Furthermore, all these cloud

monitoring services offer very limited capability

in monitoring and ensuring system health. UBL

[8] uses collected VM usage data to train Self-

Organizing Maps for anomaly prediction, which

serves a similar purpose to ATOM’s monitoring

component. Besides the detailed comparison in

Section 1, SOM requires an explicit training

stage and needs to be trained by normal data,

while PCA could identify what is normal

directly from the history data provided normal

data is the majority. Unlike UBL and ATOM

which only require VM usage data, PerfCompass

collects system call traces and checks the

execution units being affected [32] to identify

whether a VM performance anomaly is caused

by internal fault like software bugs, or from an

external source such as co-existing VMs.

Astrolabe [33] is a monitoring service for

distributed re-sources, to perform user-defined

aggregation (e.g. number of nodes that satisfy

certain property) on-the-fly for the host hi-

erarchy. It is intended as a “summarizing

mechanism”. Similar to Astrolabe, SDIMS [34] is

another system that aggregates information

about large-scale networked systems with better

scal-ability, flexibility, and administrative

isolation. Ganglia [35] is a general-purpose

scalable distributed monitoring system for high

performance computing systems which also has

a hierarchical design to monitor and aggregate

all the nodes and has been used in many

clusters. These efforts are similar to the

CloudWatch module currently used in

AWS/Eucalyptus, and they reduce monitoring

overhead by simple aggregations. While the

purpose of ATOM’s tracking module is to reduce

data transfer, but it does so using online tracking

instead of simply aggregating which delivers

much more fine-grained information.

STAR [36] is a hierarchical algorithm for

scalable aggregation that reduces

communication overhead by carefully

distributing the allowed error budgets. It suites

systems like SDIMS [34] well. InfoEye [37] is a

model-based information management system

for large-scale service overlay networks through

a set of monitoring sensors deployed on different

overlay nodes with reduced overhead achieved

by ad-hoc conditions filters. InfoTrack

[38] is a monitoring system that is similar to

ATOM’s tracking module, in that it tries to

minimize continuous monitoring cost with most

information precision preserved, by leveraging

temporal and spatial correlation of monitored

attributes, while ATOM uti-lizes an optimal

online tracking algorithm that is proved to

achieve the best saving in network cost without

any prior knowledge on the data. MELA [39] is a

monitoring framework for cloud service which

collects different dimensions of data tailored for

analyzing cloud elasticity purpose (e.g. scale up

and scale down). ATOM may use MELA to

collect, track, and monitor different types of

metrics than those already available through

CloudWatch.

Volume 4, Issue 2 | March-April-2018 | http:// ijsrcseit.com

CSEIT1833614 | Received : 01 April 2018 | Accepted : 15 April 2018 | March-April-2018 [(4) 2 : 71-76]

International Journal of Scientific Research in Computer Science, Engineering and Information Technology

© 2018 IJSRCSEIT | Volume 4 | Issue 2 | ISSN : 2456-3307

71

Cloud security. IaaS system also brings us a new

set of secu-rity problems. Leading cloud

providers have developed advanced mechanism

to ensure the security of their IaaS systems.

AWS [40] has many built-in security features

such as firewalls, encrypted storage and security

logs. OpenStack uses a security component

called Keystone [41] to do authentication and

authorization. It also has security rules for

network communication in its network

component Neutron [42]. Other IaaS platforms

have similar se-curity solutions, which are

mainly firewalls and security groups.

Nevertheless, it is still possible that hackers

could bypass known security policies, or cloud

users may accidentally run some mali-cious

software. It is thus critical to be able to detect

such anomaly in near real-time to avoid leaving

hackers plenty of time to cause significant

damage. Hence we need a monitoring solution

that could actively detect anomaly, and identify

potentially malicious behavior over a large

number of VM instances. AWS recently adopts

its CloudWatch service for DDoS attacks [3], but

it re-quires user to check historical data and set a

”magic value” as the threshold manually, which

is unrealistic if user’s underlying workloads

change frequently.

In contrast, ATOM could automatically learn

the normal behavior from previous monitored

data, and detect more complex attacks besides

DDoS attacks using PCA. PCA has been widely

used to detect anomaly in network traffic

volume in backbone networks [12], [13], [17],

[43], [44], [45]. As we have argued in Section

4.1, adapting a PCA-based approach to our

setting has not been studied before and

presented significant new challenges.

The security challenges in IaaS system were

analyzed in [7], [46], [47], [48]. Virtual machine

attacks is considered a major security threat.

ATOM’s introspection component leverages

existing open source VMI tools such as Stackdb

[10] and Volatility [18] to pinpoint the anomaly

to the exact process.

VMI is a well-known method for ensuring VM

security [49], [50], [51], [52]. It has also been

studied for IaaS systems [53], [54], [55].

However, to constantly secure VM using VMI

tech-nique, the entire VM memory needs to be

traversed and analyzed periodically. It may also

require the VM to be suspended in order to gain

access to VM memory. Blacksheep [19] is such a

system that detects rootkit by dumping and

comparing groups of similar machines. Though

the performance overhead is claimed to be

acceptably low to support real-time monitoring,

clearly user programs will be negatively affected.

Another solution was suggested [56] for cloud

users to verify the integrity of their VMs.

However, this is not an “active detection and

reaction” system. In contrast, ATOM enables

triggering VMI only when a potential attack is

identified, and it also helps locate the relevant

memory region to analyze and introspect much

more effectively and efficiently using its

orchestration component.

Volume 4, Issue 2 | March-April-2018 | http:// ijsrcseit.com

CSEIT1833614 | Received : 01 April 2018 | Accepted : 15 April 2018 | March-April-2018 [(4) 2 : 71-76]

International Journal of Scientific Research in Computer Science, Engineering and Information Technology

© 2018 IJSRCSEIT | Volume 4 | Issue 2 | ISSN : 2456-3307

71

PROPOSE SYSTEM

THE ATOM FRAMEWORK

Figure 2 the ATOM framework

CC and one NC are shown in this example.

ATOM adds three components to an IaaS

system like AWS and Eucalyptus:

(1) Tracking component: ATOM adapts the

optimal online tracking algorithm for one-

dimension online tracking inside the

monitoring service on NCs. This

dramatically reduces the over-head used to

monitor cloud resources and enables

continuous measurements to CC and CLC;

(2) Monitoring component (anomaly

detection): ATOM adds this component in

CLC to analyze tracking results by the

tracking component, which provides

continuous resource usage data in real

time. It uses a modified PCA method to

continuously track the divided subspace,

as defined by the multi-dimensional values

from the tracking results, and

automatically detect anomaly by identi-

fying notable shift in the interesting

subspace. It also generates anomaly

information for further analysis by the

orchestration com-ponent when this

happens. The monitoring component also

adjusts the tracking threshold from the

tracking component dynamically online

based on the data trends and a desired false

alarm rate.

(3) Orchestration component (introspection

and debugging): when a potential anomaly

is identified by the monitoring compo-

nent, an INTROSPECT request along with

anomaly information is sent to the

orchestration component on NC, in which

VMI tools (such as LibVMI [9]) and VM

debugging tools (such as StackDB [10]) are

used to identify the anomalous behavior

inside a VM and raise an alarm to cloud

users for further analysis.

ORCHESTRATION COMPONENT

The monitoring component in Section 4 detects

the abnormal state and identifies which

measurement on which VM might be respon-

sible. In this section, we describe how

orchestration component is able to

automatically mitigate the malicious behavior

after an anomaly is detected.

Volume 4, Issue 2 | March-April-2018 | http:// ijsrcseit.com

CSEIT1833614 | Received : 01 April 2018 | Accepted : 15 April 2018 | March-April-2018 [(4) 2 : 71-76]

International Journal of Scientific Research in Computer Science, Engineering and Information Technology

© 2018 IJSRCSEIT | Volume 4 | Issue 2 | ISSN : 2456-3307

71

Modern IaaS cloud vendors offer services

mostly in the form of VMs, which makes it

critical to ensure VM security in order to

attract more customers. VMI technique has

been widely studied to introspect VM for

security purpose. There are also several popular

open source general-purpose VMI tools such as

LibVMI [9], Volatility [18], and StackDB [10],

for researchers to explore and develop more

sophisticated applications. LibVMI has many

basic APIs that support memory read and write

on live memory. Volatility itself supports

memory forensics on a VM memory snapshot

file, and it has many Linux plugins that are

ready to use. StackDB is designed to be a multi-

level debugger, while also serves well as a

memory-forensics tool. Other more

sophisticated techniques developed for special-

purpose VMI anomaly detection are generally

based on these tools. Blacksheep [19], for

instance, utilizes Volatility and specifically

developed plug-ins to imple-ment a distributed

system for detecting anomalies inside VMs

among groups of similar machines. However, as

most other VMI strategies to secure VMs, it

needs to dump the whole memory space of the

target VM, and then analyze each piece,

typically by comparing with what’s defined a

“normal” state. Thus to protect VMs in real

time, the whole memory space needs to be

analyzed constantly, introducing much

overhead into the production system.

ATOM implements its orchestration

component based on Volatility (with LibVMI

plug-in for live introspection) and StackDB. A

crucial difference with other systems is that,

ATOM only introspects the VM when an

anomaly happens, and only on the relevant

memory space of the suspicious VMs. The

monitoring component in ATOM serves as a

trigger to inform VMI tools when and where to

do introspection. The anomalies are found by

analyzing previously monitored resource usage

data, in monitoring component, which is much

more lightweight than analyzing the whole

memory space. Then the metrics identification

process in monitoring component could locate

which dimensions are suspi-cious, indicating

the relevant metrics on some particular VMs.

This information is sent to orchestration

component along with a VMI request, which

then only introspects the relevant memoy

Volume 4, Issue 2 | March-April-2018 | http:// ijsrcseit.com

CSEIT1833614 | Received : 01 April 2018 | Accepted : 15 April 2018 | March-April-2018 [(4) 2 : 71-76]

International Journal of Scientific Research in Computer Science, Engineering and Information Technology

© 2018 IJSRCSEIT | Volume 4 | Issue 2 | ISSN : 2456-3307

71

Fig. 3. Memory space introspected by ATOM.

After the orchestration component identifies

potential abnor-mal processes, an alarm is raised

with associated information identified by VMI

tools. The alarm and such information are

provided to the VM user. If user confirms this as

an abnormal behavior, ATOM is able to

terminate the malicious processes inside a VM

instance by using tools like StackDB [10].

StackDB could be used to debug, inspect,

modify, and analyze the behavior of running

programs inside a VM instance. To kill a process,

it first finds the task_struct object of the running

process using process name or id, and then

passes in SIGKILL signal. Next time the process

is being scheduled, it is killed immediately.

Although the anomalies that could be

detected by ATOM is limited compared with

other systems which analyze the whole memory

space, we argue the framework of ATOM could

be easily extended to detect more complex

attacks. First, more metrics could be easily added

to monitor for each VM. Also, many other auto-

debugging tools could be developed, which are

useful to find various kinds of attacks and

perform different desirable actions.

Note that killing the identified, potentially

malicious process is just one possible choice

provided by ATOM, which is performed only if

user agrees to (ATOM is certainly able to

automate this as well if desired). Alternatives

could be to terminate the network connections

or to close file handles. A more sophisticated

way is to study a rich dataset of known attacks

(e.g., Exploits Database) and design rule-based

approaches to mitigate attacks based on different

patterns. We refer these active actions, together

with introspection, as ATOM’s orchestration

module. Orchestration in ATOM can be greatly

Volume 4, Issue 2 | March-April-2018 | http:// ijsrcseit.com

CSEIT1833614 | Received : 01 April 2018 | Accepted : 15 April 2018 | March-April-2018 [(4) 2 : 71-76]

International Journal of Scientific Research in Computer Science, Engineering and Information Technology

© 2018 IJSRCSEIT | Volume 4 | Issue 2 | ISSN : 2456-3307

71

customized to suite the needs for different tasks,

such as identification of different attacks, and

dynamic resource allocation in an IaaS system.

VM CLUSTERING

ATOM enables a continuous understanding of

the VMs in an IaaS system. In addition to

anomaly detection, this framework is also useful

for many other decision making and analytics

applications. Hence, in addition to using a PCA-

based approach in the monitoring component,

we will demonstrate that it is possible to design

and implement a VM clustering module to be

used in the monitoring component.

The objective of VM clustering is to cluster a

set of VMs into different clusters so that VMs

with similar workload characteris-tics end up in

the same group. This operation assists making

load balancing decisions, as well as developing

customized, fine-tuned monitoring modules for

each cluster. For instance, a cloud provider

may want to evenly distribute the VMs having

similar resource usage patterns to different

physical nodes, in order to make sure the

physical resources are fully utilized and fewer

VMs may suffer from resource starvation. In

another example, we may want to use different

anomaly detection techniques for VMs running

a database server workload than those running a

web server.

The basic idea of our proposed approach is as

follows. The monitoring component in ATOM,

using its PCA-based approach, transforms the

original coordinates to a new coordinate system

where the principal components (PCs) are

ordered by the amount of variations on each

direction (as explained in Figure 3). Thus, if two

VMs share similar workloads, the directions of

the corre-sponding PCs between the two should

also be similar. That said,

Step 1. On CLC, a data matrix for each VM is

maintained, where the columns are metric types

and rows are time instances (i.e., a t d0 matrix for

each VM with a sliding window of t), and is

updated over time.

Step 2. ATOM performs a PCA on each VM

data matrix without standardization; since for

clustering purposes, not only the variations on

each direction is important, but also the average

usage on each dimension. For example, a VM

having a disk usage that oscillates between

10,000 and 20,000 bytes is obviously not the

same as one having oscillation between 100 and

200 bytes on the same dimension; whereas a

standardization procedure which first performs

mean-center and then normalization will make

the two oscillations look similar.This step yields

a set of PCs for each VM. The direction of each

PC is denoted by the corresponding eigen vector

while the variation is shown by the associated

eigen value.

Step 3. Suppose VM1 has eigen vectors

(v11;v12;:::) and corresponding eigen values

(l11;l12;:::), while VM2 has (v21;v22;:::) and

(l21;l22;:::). We measure the distance be-tween

two directions using cosine distance; defined as

(1 cosine similarity). Intuitively, the bigger the

angle between two directions (the less similar

they are), the smaller their cosine similarity is,

hence the larger the cosine distance becomes.

Volume 4, Issue 2 | March-April-2018 | http:// ijsrcseit.com

CSEIT1833614 | Received : 01 April 2018 | Accepted : 15 April 2018 | March-April-2018 [(4) 2 : 71-76]

International Journal of Scientific Research in Computer Science, Engineering and Information Technology

© 2018 IJSRCSEIT | Volume 4 | Issue 2 | ISSN : 2456-3307

71

Finally, the distance between the two VMs is

defined as:

of each corresponding pair of eigen vectors from

VM1 and VM2, weighted by the difference of

the corresponding eigen values to ensure that

the variations do not differ a lot.

Step 4. Using VMdist as the distance measure

between any two VMs, we use DBSCAN [20] to

cluster similar VMs together. DBSCAN is a

threshold-based (aka density based) clustering

algorithm which requires two parameters: e

which is the density threshold, and minPts

which is the number of minimum points to form

a cluster. DBSCAN expands a cluster from an

un-visited data point towards all its neighboring

points provided the distance is within e, and

then recursively expands from each of the

neighboring point. Points are marked as an

outlier if the number of points in their cluster is

fewer than minPts. Compared with other

popular clustering methods like k-means,

density-based clustering algorithm does not

require the prior-knowledge on the number of

clusters, neither does it need to iteratively

compute an explicit “centroid” and re-cluster at

every iteration. By default, ATOM sets

minPts=10, and computes the thresh-old value e

using a sampling based approach. More specifi-

cally, we randomly select n pairs of VMs and

compute their VMdist. We sort the n VMdist

values, and set e = VMdisti if VMdisti+1 > 5

VMdisti. The intuition is that for any point, the

distance to a point in a different cluster is much

longer than the distance to a point in the same

cluster, and we want to find a large enough

“inner cluster” distance and use it as the

threshold value e to determine whether two

points belong to the same cluster.

CONCLUSION

We exhibit the ATOM-framework that can be

effectively incorporated into a standard IaaS

framework to give mechanized, constant

tracking, monitoring, and orchestration of

framework asset use in about ongoing. ATOM is

to a great degree valuable for abnormality

identification, auto-scaling, and dynamic asset

designation and load adjusting in IaaS

frameworks. Intriguing future work incorporates

expanding ATOM for more advanced asset

orchestration and joining the barrier against

considerably more intricate assaults in ATOM.

REFERENCES

[1]. Amazon. http://www.aws.amazon.com/.

Accessed Nov. 5, 2016.

[2]. ITWORLD.

http://www.itworld.com/security/428920/attac

kers-install-ddos-bots-amazon-cloud-

exploiting-elasticsearch-weakness. Accessed

Nov. 5, 2016.

[3]. Amazon. AWS Best Practices for DDoS

Resiliency. https://d0.awsstatic.

com/whitepapers/DDoS White Paper

June2015.pdf. Accessed Nov. 5, 2016.

[4]. Eucalyptus.

http://www8.hp.com/us/en/cloud/helion-

eucalyptus.html. Accessed Nov. 5, 2016.

[5]. D Nurmi, R. Wolski, C. Grzegorczyk, G.

Obertelli, S. Soman, L. Yous-eff, and D.

Zagorodnov, “The eucalyptus open-source

cloud-computing system,” in CCGRID, 2009.

[6]. M Du and F. Li, “Spell: Streaming parsing of

system event logs,” in ICDM, 2016.

Volume 4, Issue 2 | March-April-2018 | http:// ijsrcseit.com

CSEIT1833614 | Received : 01 April 2018 | Accepted : 15 April 2018 | March-April-2018 [(4) 2 : 71-76]

International Journal of Scientific Research in Computer Science, Engineering and Information Technology

© 2018 IJSRCSEIT | Volume 4 | Issue 2 | ISSN : 2456-3307

71

[7]. W Dawoud, I. Takouna, and C. Meinel,

“Infrastructure as a service security: Challenges

and solutions,” in INFOS, 2010.

[8]. D J. Dean, H. Nguyen, and X. Gu, “UBL:

Unsupervised behavior learn-ing for predicting

performance anomalies in virtualized cloud

systems,” in ICAC, 2012.

[9]. LibVMI. http://libvmi.com/. Accessed Nov. 5,

2016.

[10]. D. Johnson, M. Hibler, and E. Eide,

“Composable multi-level debugging with

Stackdb,” in VEE, 2014.

[11]. K. Yi and Q. Zhang, “Multi-dimensional online

tracking,” in SODA, 2009.

[12]. H. Ringberg, A. Soule, J. Rexford, and C. Diot,

“Sensitivity of PCA for traffic anomaly

detection,” in SIGMETRICS Performance

Evaluation Review, 2007.

[13]. A. Lakhina, M. Crovella, and C. Diot,

“Diagnosing network-wide traffic anomalies,”

in SIGCOMM, 2004.

[14]. V. Varadarajan, T. Kooburat, B. Farley, T.

Ristenpart, and M. M. Swift, “Resource-freeing

attacks: improve your cloud performance (at

your neighbor’s expense),” in CCS, 2012.

[15]. W. Li, H. H. Yue, S. Valle-Cervantes, and S. J.

Qin, “Recursive PCA for adaptive process

monitoring,” Journal of process control, 2000.

[16]. J. E. Jackson and G. S. Mudholkar, “Control

procedures for residuals associated with

principal component analysis,” Technometrics,

1979.

[17]. L. Huang, M. I. Jordan, A. Joseph, M.

Garofalakis, and N. Taft, “In-network PCA and

anomaly detection,” in NIPS, 2006.

[18]. Volatility.

http://www.volatilityfoundation.org/. Accessed

Nov. 5, 2016.

[19]. A. Bianchi, Y. Shoshitaishvili, C. Kruegel, and

G. Vigna, “Blacksheep: detecting compromised

hosts in homogeneous crowds,” in CCS, 2012.

[20]. M. Ester, H.-P. Kriegel, J. Sander, X. Xu et al.,

“A density-based algorithm for discovering

clusters in large spatial databases with noise.”

in KDD, 1996.

[21]. D. E. Difallah, A. Pavlo, C. Curino, and P.

Cudre-Mauroux, “OLTP-Bench: An extensible

testbed for benchmarking relational databases,”

PVLDB, 2013.

[22]. StackDB.

http://www.flux.utah.edu/software/stackdb/do

c/all.html#using-eucalyptus-to-run-qemukvm.

Accessed Nov. 5, 2016.

[23]. I. Goiri, R. Bianchini, S. Nagarakatte, and T. D.

Nguyen, “Approx-hadoop: Bringing

approximations to mapreduce frameworks,” in

ASP-LOS, 2015.

[24]. M. T. Al Amin, S. Li, M. R. Rahman, P. T.

Seetharamu, S. Wang, T. Abdelzaher, I. Gupta,

M. Srivatsa, R. Ganti, R. Ahmed et al., “Social

trove: A self-summarizing storage service for

social sensing,” in ICAC, 2015.

[25]. J. Kelley, C. Stewart, N. Morris, D. Tiwari, Y.

He, and S. Elnikety, “Mea-suring and

managing answer quality for online data-

intensive services,” in ICAC, 2015.

[26]. X. Wang, U. Kruger, and G. W. Irwin, “Process

monitoring approach using fast moving

window PCA,” Industrial & Engineering

Chemistry Research, 2005.

[27]. Amazon. Amazon cloudwatch.

http://aws.amazon.com/cloudwatch/. Ac-

cessed Nov. 5, 2016.

[28]. OpenStack. http://www.openstack.org/.

Accessed Nov. 5, 2016.

[29]. Openstack ceilometer.

https://wiki.openstack.org/wiki/Ceilometer.

Accessed Nov. 5, 2016.

[30]. DATADOG. https://www.datadoghq.com/.

Accessed Nov. 5, 2016.

[31]. librato. https://www.librato.com/. Accessed

Nov. 5, 2016.

[32]. D. J. Dean, H. Nguyen, P. Wang, and X. Gu,

“Perfcompass: toward runtime performance

anomaly fault localization for infrastructure-

as-a-service clouds,” in HotCloud, 2014.

[33]. R. Van Renesse, K. P. Birman, and W. Vogels,

“Astrolabe: A robust and scalable technology

for distributed system monitoring,

management, and data mining,” TOCS, 2003.

[34]. P. Yalagandula and M. Dahlin, “A scalable

distributed information management system,”

in SIGCOMM, 2004.

[35]. M. L. Massie, B. N. Chun, and D. E. Culler,

“The ganglia distributed monitoring system:

Volume 4, Issue 2 | March-April-2018 | http:// ijsrcseit.com

CSEIT1833614 | Received : 01 April 2018 | Accepted : 15 April 2018 | March-April-2018 [(4) 2 : 71-76]

International Journal of Scientific Research in Computer Science, Engineering and Information Technology

© 2018 IJSRCSEIT | Volume 4 | Issue 2 | ISSN : 2456-3307

71

design, implementation, and experience,”

Parallel Computing, 2004.

[36]. N. Jain, D. Kit, P. Mahajan, P. Yalagandula, M.

Dahlin, and Y. Zhang, “Star: Self-tuning

aggregation for scalable monitoring,” in VLDB,

2007.

[37]. J. Liang, X. Gu, and K. Nahrstedt, “Self-

configuring information man-agement for

large-scale service overlays,” in INFOCOM,

2007.

[38]. Y. Zhao, Y. Tan, Z. Gong, X. Gu, and M.

Wamboldt, “Self-correlating predictive

information tracking for large-scale production

systems,” in ICAC, 2009.

[39]. D. Moldovan, G. Copil, H.-L. Truong, and S.

Dustdar, “MELA: Moni-toring and analyzing

elasticity of cloud services,” in CloudCom,

2013.

[40]. Amazon. Aws security center.

http://aws.amazon.com/security/. Ac-cessed

Nov. 5, 2016.

[41]. OpenStack. OpenStack Keystone.

http://docs.openstack.org/developer/ keystone/.

Accessed Nov. 5, 2016.

[42]. OpenStack Neutron.

https://wiki.openstack.org/wiki/Neutron. Ac-

cessed Nov. 5, 2016.

[43]. X. Li, F. Bian, M. Crovella, C. Diot, R.

Govindan, G. Iannaccone, and A. Lakhina,

“Detection and identification of network

anomalies using sketch subspaces,” in IMC,

2006.

[44]. Y. Liu, L. Zhang, and Y. Guan, “Sketch-based

streaming PCA algorithm for network-wide

traffic anomaly detection,” in ICDCS, 2010.

[45]. L. Huang, X. Nguyen, M. Garofalakis, J. M.

Hellerstein, M. I. Jordan, A. D. Joseph, and N.

Taft, “Communication-efficient online

detection of network-wide anomalies,” in

INFOCOM, 2007.

[46]. A. S. Ibrahim, J. H. Hamlyn-harris, and J.

Grundy, “Emerging security challenges of

cloud virtual infrastructure,” in APSEC 2010

Cloud Work-shop, 2010.

[47]. L. M. Vaquero, L. Rodero-Merino, and D.

Moran,´ “Locking the sky: a survey on iaas

cloud security,” Computing, 2011.

[48]. C. R. Li, D. Abendroth, X. Lin, Y. Guo, H.

wook Baek, E. Eide, R. Ricci, and J. K. V. der

Merwe, “Potassium: Penetration testing as a

service,” in SoCC, 2015.

[49]. T. Garfinkel, M. Rosenblum et al., “A virtual

machine introspection based architecture for

intrusion detection.” in NDSS, 2003.

[50]. J. Pfoh, C. Schneider, and C. Eckert, “A formal

model for virtual machine introspection,” in

ACM workshop on Virtual machine security,

2009.

[51]. B. Dolan-Gavitt, T. Leek, M. Zhivich, J. Giffin,

and W. Lee, “Virtuoso: Narrowing the

semantic gap in virtual machine introspection,”

in IEEE Symposium on Security and Privacy,

2011.

[52]. Y. Fu and Z. Lin, “Space traveling across vm:

Automatically bridging the semantic gap in

virtual machine introspection via online kernel

data redirection,” in IEEE Symposium on

Security and Privacy, 2012.

[53]. A. S. Ibrahim, J. Hamlyn-Harris, J. Grundy,

and M. Almorsy, “Cloudsec: a security

monitoring appliance for virtual machines in

the iaas cloud model,” in NSS, 2011.

[54]. F. Zhang, J. Chen, H. Chen, and B. Zang,

“CloudVisor: retrofitting protection of virtual

machines in multi-tenant cloud with nested

virtu-alization,” in SOSP, 2011.

[55]. H. W. Baek, A. Srivastava, and J. Van der

Merwe, “CloudVMI: Virtual machine

introspection as a cloud service,” in IC2E,

2014.

[56]. B. Bertholon, S. Varrette, and P. Bouvry,

“Certicloud: a novel tpm-based approach to

ensure cloud iaas security,” in IEEE Cloud

Computing, 2011.

[57]. M. Du and F. Li, “ATOM: automated tracking,

orchestration and moni-toring of resource

usage in infrastructure as a service systems,” in

IEEE BigData, 2015.

Volume 4, Issue 2 | March-April-2018 | http:// ijsrcseit.com

CSEIT1833614 | Received : 01 April 2018 | Accepted : 15 April 2018 | March-April-2018 [(4) 2 : 71-76]

International Journal of Scientific Research in Computer Science, Engineering and Information Technology

© 2018 IJSRCSEIT | Volume 4 | Issue 2 | ISSN : 2456-3307

71

AUTHOR DEATILAS

K SANDHYA RANI is working an assistant

professor in VIGNAN’S LARA INSTITUTE

OF TECHNOLOGY & SCIENCE... Vadlamudi-

522213 Guntur Dist. She has Experience in the

teaching field For 2 years and her interested

in research area data mining.

KUNTA SRINU IS PURSUING MCA. Degree

from VIGNAN’S LARA INSTITUTE OF

TECHNOLOGY &SCIENCE, Vadlamudi,

Guntur, Andhra Pradesh, India

