
International Journal of Scientific Research in Computer Science, Engineering and Information Technology

© 2018 IJSRCSEIT | Volume 4 | Issue 2 | ISSN : 2456-3307

 CSEIT1833623 | Received : 01 April 2018 | Accepted : 10 April 2018 | March-April-2018 [(4) 2 : 115-121]
151

An Optimal Strategy for Evaluating Continuous Top-k Monitoring

on Document Streams
V. Hema Priya

 *1
, Ponduri Siva Parvathi

 2

1* hemapriyamtech@gmail.com,siva.ponduri1609@gmail.com
2

ABSTRACT

The proficient preparing of report streams assumes a vital part in numerous data separating frameworks.

Developing applications, for example, news refresh sifting and informal community warnings, request to give

end-clients the most significant substance to their inclinations. In this work, client inclinations are

demonstrated by an arrangement of watchwords. A focal server screens the record stream and consistently

reports to every client the best k archives that are most pertinent to her catchphrases. Our goal is to help

substantial quantities of clients and high stream rates while invigorating the best k comes about quickly. Our

answer forsakes the conventional recurrence requested ordering approach. Rather, it takes after an identifier-

requesting worldview that suits better the idea of the issue. At the point when supplemented with a novel,

locally versatile strategy, our technique offers (I) demonstrated optimality w.r.t. the quantity of considered

questions per stream occasion, and (ii) a request for extent shorter reaction time (i.e., time to invigorate the

inquiry comes about) than the present best in class.

Keywords: Top-k query, continuous query, document stream

I. INTRODUCTION

N the era of big data, the amount of information

made available to users far exceeds their capacity to

discover and understand it. For instance, a user on

Twitter may receive an overwhelming volume of

notifications if her mes- sage is retweeted by too

many people in a short period. Moreover, the

timeliness of information filtering and deliv- ery is of

great importance. For example, a user would like to

receive instant updates of the hottest topics on social

news and entertainment websites (e.g., on

reddit.com). Thus, the efficient filtering and

monitoring of rapid streams is key tomany emerging

applications.

We consider continuous top-k queries on

documents (CTQDs), a topic which has received a lot

of attention recently [1], [2], [3]. In this context, a

central server monitors a document stream and hosts

CTQDs from various users. Each CTQD specifies a

set of keywords, as explicitly given by the issuing

user or extracted from Their online behaviour [4],

[5]. The task of the server is to continuously refresh

for snapshot top-k queries revealed that, for sparse

types of data, it may be more effec- tive to sort the

lists of the inverted file by document ID [10], thus

enabling ―jumps‖ within the relevant lists, i.e., disre-

garding contiguous fractions of the lists. This is an

interest-ing fact, which however is not directly

applicable to continuous top-k queries. An

application of ID-ordering to document streams

would incur costly index maintenance, and also it

would require repetitive query reevaluation, as it

entails no mechanism to reuse past query results in

response to updates.

We propose an ID-ordering methodology for

CTQDs. Our methodology involves three

dimensions. First, we reverse the role of the

about:blank
about:blank
about:blank
about:blank

International Journal of Scientific Research in Computer Science, Engineering and Information Technology

© 2018 IJSRCSEIT | Volume 4 | Issue 2 | ISSN : 2456-3307

 CSEIT1833623 | Received : 01 April 2018 | Accepted : 10 April 2018 | March-April-2018 [(4) 2 : 115-121]
151

documents and the queries. That is, we index the

(relatively static) queries and probe the streaming

docu- ments against that index, in order to eliminate

the need for index maintenance due to stream

events. The general idea of indexing the queries

instead of the data in a streaming con- text is

commonly referred to as query indexing, and has

been used for many types of continuous queries (e.g.,

[11]). Second, since we index user queries which,

unlike the documents, typically comprise just a few

terms (i.e., they are hugely sparse), we may

effectively apply ID-ordering to the query index. The

adaptation of ID-ordering to a query index, how-

ever, is far from trivial and requires a careful

redesign of its inner workings, as we explain in

Section 4.2. By incorporat- ing the first two

dimensions, we already have a preliminary CTQD

method (albeit just a stepping stone to our complete,

most comprehensive solution), termed Reverse ID-

Ordering (RIO). RIO is already faster than existing

CTQD approaches, but we do not stop there. Third,

we complement RIO with a novel, locally adaptive

technique that produces tighter proc-essing bounds.

This technique renders the overall CTQD method

optimal w.r.t. the number of considered queries per

stream event, i.e., we prove that it computes the

score of an arriving document w.r.t. the smallest

possible number of queries, for any algorithm that

follows the ID-ordering para- digm and guarantees

correctness. The resulting method is our most

advanced technique, called Minimal RIO (MRIO).

Through an extensive experimental evaluation

with streams of real documents, we demonstrate that

MRIO out- performs the current state-of-the-art

CTQD solution by an order of magnitude.

Furthermore, the ―internal‖ comparison between

MRIO and RIO reveals that the vast performance

improvements achieved are primarily due to the

third dimension sketched above, i.e., due to our

locally adaptive technique. The contributions we

make in this paper are summarized as follows:

● Our advanced approach (MRIO) outperforms the

current state-of-the-art by one order of

magnitude.

● MRIO employs novel bounds that offer proven

optimality w.r.t. the number of considered

queries per stream event.

● MRIO is more than two times faster than RIO,

dem- onstrating that a skillful adaptation of ID-

ordering to CTQDs alone (as in RIO) is not

enough to derive the improvements achieved in

this work.

● We further improve the performance of MRIO

by restructuring its query index (i.e., rearranging

the queries inside) to better exploit locality and

strengthen the pruning effectiveness of its

bounds.

Our evaluation has a broader experimental value too,

because it involves (besides the state-of-the-art for

CTQDs) methods for different formulations, which

perform competitively, and were never put in the

same testbed before.

II. RELATED WORK

In information filtering the objective is to remove

from an information stream those items that are of

no inter-est to the end users. Information filtering

approaches have been studied for text streams [12],

however, their focus is to determine an appropriate

relevance threshold, based on the user’s profile and

the stream’s character-istics [13]. The actual filtering

involves fixed thresholds (and therefore binary

relevance assessments per stream item), rather than

relative similarity and ranking.

Publish subscribe is a messaging pattern where the

publishers of messages categorize their messages into

International Journal of Scientific Research in Computer Science, Engineering and Information Technology

© 2018 IJSRCSEIT | Volume 4 | Issue 2 | ISSN : 2456-3307

 CSEIT1833623 | Received : 01 April 2018 | Accepted : 10 April 2018 | March-April-2018 [(4) 2 : 115-121]
151

classes, and the subscribers receive only those

messages that fall in their classes of interest [14],

[15]. Unlike CTQD, there is typically a set of

predefined classes (instead of terms) and there is no

notion of relative rank-ing. [16] does consider

relative similarity, however, its goal is to identify the

k most relevant queries for every newly published

message. [17] proposes a probabilistic algorithm that

keeps a select subset of the messages in a sliding

window to support approximate top-k process-ing.

Still in the publish subscribe setting, [18] considers

the social annotation of news articles. Specifically,

given a set of news stories (documents), it maintains

for each of them the k most related tweets posted.

Although in the documents (news stories) play the

role of the standing queries, it could be applied to

our setting (by treating user queries as news stories),

although it is not tailored to it. We include this

method in our experiments, abbreviated as TPS (for

top-k publish subscribe).

The top-k query is relevant to our work. Given a set

of options and a scoring function defined over their

attributes, the goal is to report the k options with the

highest scores. Top-k processing methods have been

extensively studied in relational databases; [19] offers

an extensive survey. Among them, the threshold

algorithm [9] is central to our competitors. It assumes

that the options are indexed by a number of lists,

each of which is respon-sible for one option

attribute, and keeps options sorted in descending

order of that attribute. The main idea is to consider

options from the sorted lists in a round-robin fashion

and maintain an upper bound (threshold) for the

score of any unseen option. The algorithm

terminates when the k-th best option found so far

scores no lower than the threshold.

In the context of text search engines, similarity

search is typically framed as a top-k problem over a

set of docu-ments. Terms (in queries and documents)

are treated as attributes, weighted based on a

standard scheme (e.g., tf-idf or Okapi BM25). The

score of a document for a query is defined as a

function over their common terms, such as cosine

similarity. To facilitate search, the documents are

indexed by an inverted file; [8] surveys different

types of inverted files and query processing

techniques. The inverted file includes a sorted list

per term. In the frequency-ordering paradigm, the

sorting key is term frequency (weight), whereas in

ID-ordering it is the document ID. In the former

case, processing follows similar principles to the

threshold algorithm in order to consider only the top

parts of the sorted lists. In the latter case, the lists are

read in their entirety but jumps over ID ranges are

made possible; in Section 4.1, we describe in more

detail the most efficient processing approach in this

paradigm [10], [20].

Continuous versions of the top-k query have also

been studied. Top-k monitoring was originally

addressed over a stream of low-dimensional records

[21], [22]. The pro-posed methods relied on spatial

indices and geometric reasoning (e.g., dual space

transformations), and were thus tailored to data in

just a handful of dimensions. Bound by the

dimensionality curse, these approaches are not

applicable to document streams, because if terms

were dealt with as attributes, dimensionality would

be in the order of hundreds of thousands.

Rao et al. [23] consider streams of documents, but

address a special version of continuous top-k queries

where the query weights are equal (equivalently, the

query terms are unweighted). In this version of the

problem, if the search terms in a query q are a

superset of those in another q0, then the score of a

document w.r.t. q is always larger than its score

w.r.t. q0. This means that if we compute the score of

International Journal of Scientific Research in Computer Science, Engineering and Information Technology

© 2018 IJSRCSEIT | Volume 4 | Issue 2 | ISSN : 2456-3307

 CSEIT1833623 | Received : 01 April 2018 | Accepted : 10 April 2018 | March-April-2018 [(4) 2 : 115-121]
151

a stream document d w.r.t. q, and that score is

already smaller than the score of the k-th document

in the result of q0, we can directly infer that q0 is not

affected by d. The proposed solution utilizes this

―coverage‖ relationship between queries to safely

ignore some of them when a document streams in. It

is inapplicable to our problem, where query weights

are generally not equal. Even if an extension were

possible, the chances of an ad-hoc user query being

completely covered by another would be too slim.

Closest related to our work are methods for con-

tinuous top-k queries (with ad-hoc term weights) on

document streams. [2] assumes the sliding window

model and indexes the valid documents by a

(frequency-ordered) inverted file. It uses the

threshold algorithm to compute the initial top-k

results, and maintains pointers in the sorted lists so

as to resume processing from these positions when

result refill is necessary. [1] proposes an approach

that also relies on frequency-ordering and the

threshold algorithm, but indexes the queries instead

of the stream documents. It is shown to outperform

[2] and is the current state-of-the-art. We refer to it

as reverse threshold algorithm (RTA). The same

authors extended RTA to heterogeneous scoring

functions, by considering hotness in addition to

similarity score [24].

Vouzoukidou et al. [3] propose a CTQD method,

called SortQuer. For every term in the dictionary,

they repre-sent each query q that includes the term

as a point in a two-dimensional space – one axis

corresponds to the score of the current top result

document and the other axis to the query weight for

that term. When a document (which includes the

term) arrives, it is mapped to a region. Only queries

that fall in that region could be affected by the

document. Vouzoukidou et al. [3] eval-uate the k = 1

case; in that case, SortQuer outperforms RTA.

Although SortQuer was designed with the k = 1 case

in mind, it applies easily to k > 1 as well, thus we

include it in our experiments, and offer a

comprehensive evaluation against our methods and

previous art.

Some stream processing frameworks for multidimen-

sional objects are also related to our work. Koudas et

al. [25] propose an approximate k-nearest neighbor

monitoring technique for streams of low-

dimensional points. However, their solution is

inapplicable to CTQDs, because even if stream

documents were mapped to points in term space,

their dimensionality would be in the order of many

thousands. Zhang et al. [26] study a shared

processing framework for multiple aggregation

queries on a stream. It is an interesting idea to share

computations among queries. However, this work is

in-applicable to CTQDs because it cannot handle

weighted sum aggregates for arbitrary weights. That

is, even if two CTQDs share some common terms,

their respective weights for these terms are generally

different.

III. EXSTING SYSTEM

In this section, we first define the similarity metric

between queries and documents, and present the

model of focusing on the fresher stream content.

Next, we formalize the contin- uous top-k query on

documents.

Similarity Measure

We treat the query (i.e., the set of keywords it

specifies) and the documents as vectors. Letting T be

the dictionary of all terms, a query or a document

vector includes one weight per term in the

dictionary.

International Journal of Scientific Research in Computer Science, Engineering and Information Technology

© 2018 IJSRCSEIT | Volume 4 | Issue 2 | ISSN : 2456-3307

 CSEIT1833623 | Received : 01 April 2018 | Accepted : 10 April 2018 | March-April-2018 [(4) 2 : 115-121]
151

That is, a query q and a docu- ment d are represented

as

q ¼ hw1; w2; ... ; wjTji; d ¼ hf1; f2 ... ; fjTji:

The term weights wi and fi can be assigned to

queries and documents, respectively, using any

standard weighting scheme, such as tf-idf or Okapi

BM25. Without loss of gen- erality, we assume that

all query and document vectors are normalized to

unit magnitude. Note that user queries typically

include just a few terms, which means that the query

vectors are extremely sparse (i.e., include numerous

zero values). The documents, too, include just a

fraction of the terms in the dictionary, thus, there

are many zeros in their vectors.

As per common practice [27], the textual similarity

between a query q and a document d is defined as

the cosine similarity of their vectors

The cosine similarity measure cðq; dÞ takes values in

½0; 1];

the higher its value, the greater the textual

similarity.

Document Freshness

In stream monitoring applications, the freshness of

informa- tion is essential. Hence, a focusing on the

most recent stream documents is required. The two

prevalent formulations to achieve this focusing are

the sliding window and the decay model. A sliding

window only considers as valid the docu- ments that

arrived most recently; the sliding window includes

either a fixed number of documents (count-based

version) or those that arrived within a fixed number

of time units before current time (time-based). On

the other hand, in the decay model the score of the

documents drops over time by applying a decay

function, so that the more recent documents are

favored in query answering. Our work applies to

both models, but the latter (and in particular its

forward-decay version) is better suited to our

targeted applications, as suggested in [3], [28]. The

forward-decay model works as follows.

Consider a document d with arrival time td and

cosine similarity cðq; dÞ to query q. The score of d

w.r.t. q is defined as

Sðq; dÞ¼ cðq; dÞ=e—ZDtd;

where Z is an application-specified decay parameter,

and Dtd is the difference between the document’s

arrival time td and a reference time t0 in the past

(e.g., the system startup time). Unlike the vanilla

decay model, this forward-decay formula- tion

associates an invariable score to each arriving

document (that is, Sðq; dÞ does not change over

time)

while at the same time it effectively captures the

freshness requirement of streaming applications [28].

Note that in this model, arriving documents receive

increasingly larger scores as time goes by.1

Problem Definition

A stream of documents flows into a central

processing server, which hosts a set of CTQDs. Each

CTQD specifies a set of keywords (modeled as a

query vector q) and a posi- tive integer k. For the

sake of notation, we denote by m the number of

keywords it specifies. The result of a CTQD includes

the k stream documents with the highest scores Sðq;

dÞ seen so far. The task of the stream server is to

update all query results as new documents arrive.

Document arrivals are referred to as stream events.

The primary performance metric in our work is the

International Journal of Scientific Research in Computer Science, Engineering and Information Technology

© 2018 IJSRCSEIT | Volume 4 | Issue 2 | ISSN : 2456-3307

 CSEIT1833623 | Received : 01 April 2018 | Accepted : 10 April 2018 | March-April-2018 [(4) 2 : 115-121]
151

time required to refresh (update) all CTQD results in

response to stream events.

Although in our default setting document arrivals

are the only type of stream events, in Section 6 we

consider the han- dling of other events types, such as

query insertions, query deletions, and document

expirations. The handling of docu- ment expirations

enables, among others, the application of our

framework to the sliding window model too.

IV. ID-ORDERING TECHNIQUES

Index & Query Processing for Snapshot Queries In

this section, we overview the ID-ordering paradigm

for snapshot queries. The documents are indexed by

an inverted file, comprising a list Li for every term ti

in the dictionary. Li holds an entry hdID; fii for

every document that includes term ti (where dID is

the ID of the document, and fi its weight for term ti).

All lists are sorted in ascending document ID. The

execution strategy to process a (snapshot) query q on

this index evaluates the ocuments one after another

from the sorted lists, but it performs ―jumps‖ over

zones of document IDs. The most efficient

processing approach is Weighted AND [10], [20]; in

the following we refer to this approach.

The maximum fi value in each list is pre-computed

and stored with it – we denote it as mi. Posed a

query, the algo- rithm executes in a number of

iterations involving only the relevant lists. For every

list Li, a cursor ci is used to store the ID of the next

unconsidered document in the list. Assume

Fig. 1. Query processing in the ID-ordering

paradigm.

That the query involves terms t1; t2; tm. At the

beginning of an iteration, the processing order

among the lists is decided based on their ci, i.e., by

placing first the list whose cursor points at the

smallest document ID, then the list whose cur- sor

points at the next smallest document ID, etc. Assume

that the processing order is L1 ! L2 ! .. . ! Lm

(equivalently, in the beginning of the iteration c1 ≤

c2 ≤ ... ≤ cm). The invariant of the method is that, for

every i 2 ½1; mÞ, any list after the ith in the

processing order includes no entry for doc- ument

IDs in ½c1; ciÞ.

IV. CONCLUSION

In this paper, we propose an adaptable system for the

preparing of nonstop best k questions on report

streams. A CTQD persistently reports the k most

pertinent records to an arrangement of watchwords.

CTQDs discover application in numerous developing

applications, for example, email and news separating

our preparatory approach, RIO, adjusts the ID-

requesting worldview to the CTQD setting. An

examination on RIO uncovers that the key factor

that decides its execution is the quantity of emphases

it executes. This inspires our propelled approach,

MRIO, which decreases the quantity of cycles as well

International Journal of Scientific Research in Computer Science, Engineering and Information Technology

© 2018 IJSRCSEIT | Volume 4 | Issue 2 | ISSN : 2456-3307

 CSEIT1833623 | Received : 01 April 2018 | Accepted : 10 April 2018 | March-April-2018 [(4) 2 : 115-121]
151

as is demonstrated to limit it. We accomplish this by

presenting the novel, locally versatile limits. Broad

analyses with floods of genuine records exhibit that

MRIO is a request of size speedier than the past

cutting edge. A promising bearing for future work is

to stretch out our approach to estimated top-k

inquiries.

V. REFERENCES

1. P. Haghani, S. Michel, and K. Aberer, ―The gist

of everything new: Personalized top-k processing

over web 2.0 streams,‖ in Proc. 19th ACM Int.

Conf. Inf. Knowl. Manage., 2010, pp. 489–498.

2. K. Mouratidis and H. Pang, ―Efficient evaluation

of continuous text search queries,‖ IEEE Trans.

Knowl. Data Eng., vol. 23, no. 10, pp. 1469–1482,

Oct. 2011.

3. N. Vouzoukidou, B. Amann, and V.

Christophides,―Processing continuous text

queries featuring non-homogeneous scoring

functions,‖ in Proc. 21st ACM Int.Conf. Inf.

Knowl. Manage., 2012, pp. 1065–1074.

4. A. Hoppe, ―Automatic ontology-based user

profile learning from heterogeneous web

resources in a big data context,‖Proc. VLDB

Endowment, vol. 6, pp. 1428–1433, 2013.

5. A. Lacerda and N. Ziviani, ―Building user profiles

to improve user experience in recommender

systems,‖ in Proc. 6th ACM Int. Conf. Web

Search Data Mining, 2013, pp. 759–764.

6. M. Busch, K. Gade, B. Larson, P. Lok, S.

Luckenbill, and J.J. Lin, ―Earlybird: Real-time

search at twitter,‖ inProc. IEEE 28th Int. Conf.

Data Eng., 2012, pp. 1360–1369.

7. L. Wu, W. Lin, X. Xiao, and Y. Xu, ―LSII: an

indexing structure for exact real-time search on

microblogs,‖ in Proc.IEEE 29th Int. Conf. Data

Eng., 2013, pp. 482–493.

8. J. Zobel and A. Moffat, ―Inverted files for text

search engines,‖ACM Comput. Surv., vol. 38, no.

2, 2006, Art. no. 6.

9. R. Fagin, A. Lotem, and M. Naor, ―Optimal

aggregation algo- rithms for middleware,‖ J.

Comput. Syst. Sci., vol.

66, no. 4, pp. 614–656, 2003.

AUTHOR DETAILS

V.HEMA PRIYA is working an

assistant professor in VIGNAN’S

LARA INSTITUTE OF

TECHNOLOGY&SCIENCE.Vadla

mudi-522213 Guntur Dist.She

has Experience in the teaching

field For 2 years and her

interested in research area data

mining.

PODURI SIVA PARVATHI she

is Currently pursuing MCA in

MCA Department,Vignan’s Lara

Institute Of

Technology&Science,Vadlamudi,

Guntur, Andhra Pradesh, India.

she received his Bachelor of

science from ANU

