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ABSTRACT 
 

In this project, the Delay-Sensitive data capacity of the Wireless fading channel is explored under two distinct 

suppositions on the accessible transmitter channel state data (CSI). The principal situation accept consummate 

earlier learning of both the fundamental and spy channel picks up. Here, upper and lower limits on the 

protected delay constrained limit are inferred and appeared to be tight in the high flag to-clamor proportion 

(SNR) administration (for a wide class of channel circulations). In the second situation, just the principle 

channel CSI is thought to be accessible at the transmitter. Amazingly, under this suspicion, I build up the 

achievability of non-zero secure rate (for a wide class of channel circulations) under a strict delay limitation. In 

the two cases, our achievability contentions depend on a novel two phase approach that defeats the mystery 

blackout wonder saw in before works. 
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I. INTRODUCTION 

 
In many applications, there is a delay constraint on 

the data to be transmitted via a wireless link. These 

applications range from the most basic voice 

communication to the more demanding multimedia 

streaming. However, due to its broadcast nature, the 

wireless channel is vulnerable to eavesdropping and 

other security threats. Therefore, it is of critical 

importance to find techniques to combat these 

security attacks while satisfying the delay limitation 

imposed by the Quality of Service (QoS) constraints. 

This motivates our analysis of the fundamental 

information theoretic limits of secure transmission 

over fading channels subject to strict deadlines. 

Recent works on information theoretic security have 

been largely motivated by  wire-tap channel model 

[1]. In his seminal work,  proved the achievability of 

non-zero secrecy capacity, assuming that the 

wiretapper channel is a degraded version of the main 

one, by exploiting the noise to create an advantage 

for the legitimate receiver. The effect of fading on 

the secrecy capacity was further studied in [2] in the 

ergodic setting. The main insight offered by this 

work is that one can opportunistically exploit the 

fading to achieve a non-zero secrecy capacity even if 

the eavesdropper channel is better than the 

legitimate receiver channel, on the average.  

 

Delay limited transmission over fading channels has 

been well studied in different network settings and 

using various traffic models. For instance, in [3], the 

delay constrained limit thought was presented and 

the ideal power control strategies were portrayed in a 

few intriguing situations. In [4], the strict delay 

impediment of [3] was casual by taking into 

consideration buffering the parcels at the transmitter. 

In this setup, the asymptotic conduct of the power-
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delay exchange off bend was described yielding 

profitable bits of knowledge on the structure of the 

ideal asset allotment methodologies [4]. All the more 

as of late, the booking issue of information 

transmission over a limited delay skyline accepting 

impeccable CSI was considered in [5].Our work can 

be viewed as a generalization of [3] where a secrecy 

constraint is imposed on the problem. The extension 

to the bursty traffic scenario is currently under 

investigation. 

 

The delay limited transmission of secure data over 

fading channels was considered previously in [8]. In 

this work, the authors attempted to send the secure 

information using binning techniques inspired by the 

wiretap channel results. The drawback of this 

approach is that it fails to secure the information in 

the particular instants where the eavesdropper 

channel gain is larger than that of the main channel 

resulting in the so-called secrecy outage 

phenomenon (as defined in [8]). Unfortunately, in 

the delay limited setting, the secrecy outage can not 

made to vanish by increasing the block length 

leading to the conclusion that the delay limited rate 

achieved by this approach is equal to zero for most 

channel distributions of interest [8]. This obstacle is 

overcome by our two-stage approach. Here, the delay 

sensitive data of the current block is secured via 

Vernam’s one time pad approach [6], which was 

proved to achieve perfect secrecy by Shannon [7], 

where the legitimate nodes agree on the private key 

during the previous blocks. Since the key packets are 

not delay sensitive, the two nodes can share the key 

by distributing its bits over many fading realizations 

to capitalize on the ergodic behavior of the channel. 

Through the suitable rate designation, the key bits 

can be superimposed on the delay delicate 

information bundles with the goal that they can be 

utilized for securing future parcels. This is alluded as 

key reestablishment process in the continuation. This 

procedure requires an instatement stage to share the 

key required for securing the primary information 

bundles. However, the loss in the secrecy entailed by 

the initialization overhead vanishes in the 

asymptotic limit of a large number of data packets. 

Our analytical results establish the asymptotic 

optimality, with high SNR, of this novel approach in 

the scenario where both the main and eavesdropper 

channel gains are known a-priori at the transmitter 

(for a wide class of channel distributions). When 

only the main channel CSI is available, this approach 

is shown to achieve a non-zero constant secrecy rate 

for a wide class of quasi-static channels (i.e., the class 

of invertible channels [3]). 

 
Figure 1. System Model 

The rest of the paper is organized as follows. Section 

II details the system model and the notations used 

throughout the rest of the paper. In Section III, our 

main results for both the full and main CSI cases are 

obtained. Finally, Section IV concludes the paper. 

 

II.  SYSTEM MODEL  

 

The system model is as shown in Figure 1. A source 

node (Alice) communicates with a destination node 

(Bob) over a fading channel in the presence of an 

eavesdropper (Eve). I adopt a block fading model, in 

which the channel is assumed to be constant during a 

coherence interval and changes randomly from an 

interval to another according to a bounded 

continuous distribution. Also the coherent intervals 

are assumed to be large enough to allow for the use 

of random coding techniques. 

During any coherence symbol interval i, the signals 

received at the destination and the eavesdropper are 

given by  

 
where x(i) is the transmitted image, gm(i) and ge(i) 

are the fundamental channel and the spy channel 

picks up separately, wm(i) and we(i) are the i.i.d. 
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added substance white complex gaussian commotion 

with unit fluctuation at the authentic collector and 

the spy, separately. I denote the power gains of the 

fading channels for the main and eavesdropper 

channels by hm(i) = |gm(i)| 2 and he(i) = |ge(i)| 2 , 

respectively. I impose the long term average power 

constraint P¯, i.e., 

 
 

where P(h) is the power allocated for the channel 

state h = (hm, he) and the expectation is over the 

channel gains. 

 

The source wishes to send a message W ∈ W = {1, 

2, · · · , M} to the destination. In the following, our 

delay constraint is imposed by breaking our message 

into packets of equal sizes, where each one is 

encoded independently, transmitted in only one 

coherence block, and decoded by the main receiver 

at the end of this block. Accordingly, the total 

number of channel uses is partitioned into b super-

blocks. Each super-block is divided into a blocks of 

n1 symbols, where n = b a n1 and n1 denotes the 

length of coherence intervals. I will further represent 

a fading block with tuple (m, l) such that m ∈ {1, 

2, · · · , b} and l ∈ {1, 2, · · · , a}. We consider the 

problem of constructing (M1, n1) codes (M = b a M1) 

to transmit the message of the block (m, l), W(m, l) ∈ 

W1 = {1, 2, . . . , M1} to the receiver. Here, an (M1, 

n1) code consists of the following elements: 1) a 

stochastic encoder fn1 (.) at the source that maps the 

message w(m, l) to a codeword x n1 (m, l) ∈ Xn1 , 

and 2) a decoding function φ: Y n ∗ → W1 at the 

legitimate receiver, where n ∗ = (m − 1)an1 + ln1 

denotes the total number received signal dimension 

at the receiver at the end of the block (m, l). The 

average error probability of an (M1, n1) code is 

defined as 

 
where y n ∗ represents the total received signals at 

the legitimate receiver at the end of the block (m, l). 

The equivocation rate Re at the eavesdropper is 

defined as the entropy rate of the transmitted 

message conditioned on the available CSI and the 

channel outputs at the eavesdropper, i.e., 

 
 

where h n m = {hm(1), · · · , hm(n)} and h n e = 

{he(1), · · · , he(n)} denote the channel power gains of 

the legitimate receiver and the eavesdropper in n 

symbol intervals, respectively. I consider only the 

perfect secrecy (in the sense of [1]) which requires 

the equivocation rate Re to be ǫ close to the message 

rate. The delay limited perfect secrecy rate Rs,d is 

said to be achievable if for any ǫ > 0, there exists a 

sequence of codes (2n1Rs,d , n1) such that for any n1 

≥ n1(ǫ), I have for any fading block (m, l). 

 
 

Finally, we give some notational remarks. I denote 

the delay limited secrecy rate and capacity as R (F ) 

s,d and C (F ) s,d for the full CSI case (both gm and ge 

are known a-priori at the transmitter). I respectively 

use the notation R (M) s,d and C (M) s,d for the main 

CSI case (only gm is known a-priori at the 

transmitter). I denote [x] + = max{x, 0}. And, we 

remark that the expectations are with respect to 

channel gains throughout the sequel. 

 

III.  MAIN RESULTS  

 

A. Full CSI Scenario  

First, I give a simple upper bound on the delay 

limited secrecy capacity that will be used later to 

establish the optimality of the proposed approach in 

the high SNR regime. 

 

Theorem 1: The delay-limited secrecy capacity when 

both gm and ge are available at the transmitter, C (F ) 

s,d , is upper bounded by 
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for any achievable delay limited secrecy rate R (F ) 

s,d , since imposing delay constraint can only degrade 

the performance. I also have, for a given P(h), 

 
since imposing secrecy constraint can not increase 

the achievable rate. Then, combining (6) and (7), and 

maximizing over P(h), we obtain 

 
for any achievable delay-limited secrecy rate R (F ) 

s,d , which proves our result. 

 

The accompanying outcome builds up a lower bound 

on the delay constrained mystery limit utilizing our 

novel two-organize approach. The key thought is to 

share a private key amongst Alice and Bob, without 

being compelled by the delay confinement. Then, 

this key is used to secure the delay sensitive data to 

overcome the secrecy outage phenomenon. In the 

steady state, the key renewal process takes place by 

superimposing the key on the delay sensitive traffic. 

More precisely, as outlined in the proof, the delay 

sensitive traffic (secured by the previous key) serves 

as a randomization signal in the binning scheme used 

to secure the current key. At long last, since he is 

known from the earlier at the transmitter, one can 

additionally expand the delay restricted mystery rate 

by committing a part of the protected rate to the 

delay touchy activity (as controlled by the capacity 

q(h) in the accompanying hypothesis).  

 

Hypothesis 2: The delay-restricted mystery limit in 

the full CSI situation is bring down limited as takes 

after. 

 
such that q(h) is an arbitrary chosen function 

satisfying q(h) ≥ he ∀ he, and Ro is chosen to satisfy 

the followings. 

 
 

Sketch of the Proof: In our scheme, I require Alice to 

transmit a delay constrained data message and a key 

to Bob. The key is used to encrypt data and thus 

should be secured from Eve. A given message w ∈ {1, 

2, · · · , 2 (n(R (F ) s,d ))} is transmitted by sending ba 

data packets of equal length, each represented by 

D(m, l), where each packet is encoded independently 

and sent with rate R (F ) s,d during the 

corresponding block of the channel. I further divide 

a packet to be transmitted at block (m, l) into two 

parts D1(m, l) and D2(m, l). The first part of data 

packet is transmitted along with the generated key 

using the one-time pad scheme, whereas the second 

part is transmitted as a secret message. I use a 

separation strategy similar to [9] by sending public 

and private messages simultaneously. But, in contrast 

to [9], I here have the fading channel as the resource 

from Alice to Bob and Eve and I exploit it to secure 

the key, and hence, the message. I now describe the 

initial key generation and key renewal. For the very 

first a blocks (the super-block m = 1), I transmit the 

key, K(1), from Alice to Bob securely. Utilizing the 

ergodicity of the channel, I can transmit a key of 

length an1E[R′ s (h)] bits [2]. Then, for any super-

block m, I will use the key K(m − 1) for the one time 

pad, and also generate a new key K(m) for the use in 

the next super-block. For any given block (m, l), we 

use the n1Ro(h) remaining bits of the key K(m−1) 

and denote the corresponding bits as K˜ (m, l). These 

bits are used in a one-time pad scheme to construct 

Do(m, l) = D1(m, l) ⊕ K˜ (m, l). The encrypted bits 

are then mapped to a message w1(m, l) ∈ {1, 2, · · · , 2 
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n1Ro(h)}. The message w1 along with a possible 

additional randomization is transmitted along with 

the secret data. Here, the secret data I sent within a 

block is two-fold: w2(m, l) ∈ {1, 2, · · · , 2 (n1R′′ s (h))} 

which carries the corresponding data D2(m, l) and 

the key message wk(m, l) ∈ {1, 2, · · · , 2 (n1R′ s (h))}. 

These latter messages will allow us to generate the 

key K(m) of the super block m. 

 

Since b → ∞, a → ∞, n1 → ∞, it can be easily shown 

that the rates Ro(h), R′ s (h), and R′′ s (h) are 

achievable within a given block. Furthermore, the 

average key rate, E[R′ s (h)], is achievable within any 

super-block (see, e.g., [2]). 

 

I finally argue that the equivocation rate at the 

eavesdropper can be made arbitrarily close to the 

message rate with the proposed scheme. Here, I 

consider equivocation computation per block, which 

will imply the equivocation computation for the 

overall message. For a given block (m, l), the security 

of w1(m, l) follows from the one-time pad 

encryption (as the key is secured from the 

eavesdropper [7]) and the security of w2(m, l) follows 

from the wire-tap channel result along with the 

secure rate choice R′ s (h) and R′′ s (h) [1]. I note that 

during the first super-block w1(1, l) is not encrypted. 

However, this will not affect the overall secrecy of 

the data as b → ∞. Hence, the equivocation rate can 

be made close to the message rate as b → ∞, a → ∞, 

and n1 → ∞. 

 

The achievable rate is then minimized over h to 

satisfy the delay limitation and then maximized over 

all power control policies and functions q(h) (used to 

allocate rate for w2). This proves the desired result. 

The final step in this section is to prove the 

asymptotic optimality of the proposed security 

scheme in the high SNR regime. The following result 

establishes this objective by showing that the upper 

and lower bounds of Theorems 1 and 2 match in this 

asymptotic scenario. 

Lemma 3: In an asymptotic regime of high SNR, i.e., 

P¯ → ∞, the delay limited secrecy capacity is given 

by 

 
 

assuming that E h 1 min(he,hm) i is finite. Moreover, 

the capacity is achieved by the proposed one-time 

pad encryption scheme coupled with the key 

renewal process. 

 

Proof: I only need to consider the lower bound since 

the right hand side of (11) is the ergodic secrecy 

capacity in the high SNR regime, which is by 

definition an upper bound on the delay limited 

secrecy capacity. To this end, we set q(h) = he 

resulting in R′′ s (h) = 0. Furthermore, we let P(h) = c 

min(he,hm), where c is a constant, which is chosen 

according to the average power constraint. The 

achievable rate expression in the high SNR regime is 

then given by 

 
 

As P¯ → ∞, it is easy to see that c → ∞ since E h 1 

min(he,hm) i is finite, implying that the second 

constraint in (13) is loose. Ao, it is easy to see that 

the first constraint converges to the right hand side 

of the lemma. Then, by choosing Ro(h) = Ehm>he h 

log  hm he i, both constraints of (13) are satisfied and 

our result is proved. 

 

The above claim is validated numerically in Fig. 2, 

where Chi-square distribution of degree n = 4 is used 

for the statistics of channel gains of the legitimate 

receiver and the eavesdropper (the gains are assumed 

to be independent). In our simulation, I set q(h) = he 

(hence R′′ s = 0) and use channel inversion power 

control policy for the achievable rate. Remarkably, 

even with the suboptimal choice of q(h) and P(h), 
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lower and upper bounds coincides at the high SNR 

regime. 

IV. CONCLUSION 

 

The delay-limited secrecy capacity of the slow-

fading channel under different assumptions on 

the CSI at the transmitter. Our achievability 

arguments are based on  
A novel two-arrange plot that takes into account 

conquering the mystery blackout marvel for a wide 

class of channels. The plan depends on sharing a 

delay tolerant private key, utilizing arbitrary binning, 

and after that utilizing the way to scramble the delay 

touchy parcels in a one time cushion organize. For 

the full CSI case, our scheme is further shown to be 

asymptotically optimal, i.e., high SNR regime, for 

many relevant channel distributions. When only the 

main channel CSI is available, the two-stage scheme 

achieves a non-zero secure rate, under a strict delay 

constraint, for invertible channels. Finally, one can 

easily identify avenues for future works; three of 

them are immediate, namely 1) obtaining sharp 

capacity results for finite values of SNR, 2) 

characterizing the optimal power control policies, 

and 3) extending the framework to bursty traffic by 

allowing for buffer delays.  
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