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ABSTRACT 

 

Traveling salesman problem is one of the most important mathematical concepts having very high socio 

economic impact. But since TSP is NP-complete, finding an optimal solution becomes very hard when problem 

size increases. Conceptually TSP is very easy to understand but solving TSP is quite difficult than anyone can 

imagine. In this paper we have represented an improved form of nearest neighbor algorithm for solving TSP. 

We have also represented a comparative study between our proposed algorithm and original algorithm to test 

efficiency. 
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I. INTRODUCTION 

 

The traveling salesman problem is one of the most 

widely studied optimization problems having very 

dense historical background [1]. It is one kind of NP 

hard problem. [2] This problem has become a testing 

ground for new algorithms for its simplicity of 

formulation. In TSP a bunch of cities, mutually 

connected, are considered as a connected graph. 

Distances between each city are given. Each city 

represents as node and their distance represents as 

arc. A salesman needs to visit each and every city 

exactly once without making any repetition then 

come back to the starting city, traveling minimum 

distance.[3] Therefore, it is clear that TSP is a 

minimization problem to find shortest path under 

the condition that all cities are visited without 

repetition and a coincidence happens to the starting 

and ending city. Literature [4,5,6] shows that TSP is 

widely connected with many fundamental problems 

of computer science and engineering. For that reason, 

finding an efficient algorithm to solve TSP is a major 

concern for mathematicians and computer scientists 

for decades [1].  There are four types of algorithms 

for solving TSP: exact algorithms, heuristic 

algorithms, approximate algorithms and 

metaheuristics algorithms [7]. Solving TSP using 

exact algorithm we always have an optimal solution. 

[8] However, these type of algorithms are quite 

complex and requires computer facility for large 

problems. The other three types of algorithms can 

obtain good solutions with less time complexity, but 

it cannot be guarantee that the optimal solution will 

be found [9,10]. The nearest-neighbor is one of the 

very efficient algorithms. In this algorithm 

computational steps increases in some reasonable 

proportion with the size of the problem. But 

computational process in NNA is quite difficult when 

problem size is large. Section II and section III 

represents original Nearest Neighbor Algorithm 

(NNA) and our improved Nearest Neighbor 

Algorithm (INNA).  

 

II. Nearest Neighbor Algorithm 

 

To solve TSP with a Nearest Neighbor Algorithm we 

need to look at all the arcs coming out of the node 

(city) that have not been visited and choose the next 
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closest city, finally return to the starting city when 

all the other cities are visited. To solve TSP using 

Nearest Neighbor Algorithm we can use the 

following steps: [11] 

 

Step 1: Pick any starting node. 

Step 2: Look at all the arcs coming out of the 

starting node that have not been visited 

and choose the next closest node. 

Step 3: Repeat the process until all the nodes 

have been visited at least once. 

Step 4: Check and see if all nodes are visited. If 

so return to the starting point which 

gives us a tour. 

Step 5: Draw and write down the tour, and 

calculate the distance of the tour. 

 

III. Proposed Algorithm 

 

Here is a proposal of improved Nearest Neighbor 

Algorithm: 

Step 1: Construct, if necessary, the given 

network G=(V,E)  where V is the 

vertex set (cities) and E is the edges set 

(corresponding distances).  

Step 2:  Pick the designated root vertex     . 

Set Vs={s}. 

Step 3: Determine child vertex set of current 

root vertex Vc=V-Vs 

Step 4: If the child vertex set Vc is not empty, 

goto step-5. If Vc is empty, goto step 7. 

Step 5: Make a sorted list of all adjacent edges 

joining the root vertex and child 

vertices in ascending order. Choose the 

edge with minimum value (distance, 

cost etc). If there is more than one 

edge with same value, it’s okay to 

select randomly. 

Step 6: Mark the vertex adjacent with the 

selected edge at step-4 as next root 

vertex and update Vs. Go to step 3. 

Step 7: Return to the designated root vertex 

and hence the optimal solution 

obtained. 

IV. Implementation of Algorithms 

 

For the implementation of NNA and our propose 

algorithm on a specific example, we construct a five 

city problem. 

 

Consider the following distance matrix of five major 

cities of Bangladesh- Dhaka, Khulna, Chittagong, 

Sylhet and Rajshahi.[12] We use first latters of the 

cities to represent the distance matrices.  

 

 D K C S R 

D ∞ 280 260 245 245 

K 280 ∞ 372 495 303 

C 260 372 ∞ 383 522 

S 245 495 383 ∞ 462 

R 245 303 522 462 ∞ 

 

We consider Dhaka as our start vertex. Therefore, 

task of the problem is to find shortest path visiting all 

other cities only once and the tour must end at 

Dhaka. 

 

A. Solution using NNA 

The corresponding graphs considering each city a 

node and denoting with their first latter is as follows: 

 
Start: We start from Dhaka. 
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First step: From Dhaka its nearest vertex is Sylhet 

and Rajshahi with same distance 245 km. So, 

according to the algorithm we may choose randomly 

one of them. We choose Sylhet and mark it as visited. 

 
Second step: From Sylhet its nearest vertex is 

Chittagong with distance 383 km. we choose 

Chittagong and mark it as visited. 

 
Third step: From Chittagong its nearest vertex is 

Khulna with distance 383 km. Because we can’t 

choose Dhaka with distance 260km since it will 

create a sub tour. We choose Khulna and mark it as 

visited. 

 
Fourth step: From Khulna the nearest neighbor is 

Rajshahi with distance 303 km. 

 
Final step: Since all vertices are visited, we come 

back to Dhaka. 

 
Therefore our optimal route is D→S→C→K→R→D 

with total distance = 245 + 383 + 372 + 303 + 245 

=1548 

 

B. Solution Using Proposed Algorithm 

Initialization: We construct following graph from the 

given distance matrix. 

Volume%203,%20Issue%203%20|%20March-April-2018%20
http://www.ijsrcseit.com/


Volume 3, Issue 5, May-June-2018  |   http:// ijsrcseit.com  

 

Emran Islam  et al. Int J S Res CSE & IT. 2018 May-June; 3(5) : 668-672 

 
671 

 
We want to start our tour from Dhaka. So, our 

designated start vertex is D. Therefore, 

Root vertex set Vs={D} 

Child vertex Set Vc=V-Vs={S,C,K,R} 

Distance travelled = 0 

Iteration 1: Sorted list of all adjacent edges joining 

the root vertex D and child vertices in ascending 

order, 

DS 245 

DR 245 

DC 260 

DK 280 

 

We may choose DS or DR. We choose DS and mark S 

as root vertex. 

Root vertex set Vs={D,S} 

Child vertex Vc={C,K,R} 

Travelled way till now: D→S 

Distance travelled=0+245=245 

Iteration 2: The adjacent edges with root vertex S and 

child vertices are SC, SK, SR. Sorting them in 

ascending order according to their distance we have, 

SC 383 

SR 462 

SK 495 

 

We choose SC and mark C as root vertex. 

Root vertex set Vs={D,S,C} 

Child vertex Vc={,K,R} 

Travelled way till now: D→S→C 

Distance travelled=245+383=628 

Iteration 3: The adjacent edges with root vertex C 

and child vertices are CK,CR. Sorting them in 

ascending order according to their distance we have, 

CK 372 

CR 522 

 

We choose CK and mark K as root vertex. 

Root vertex set Vs ={D,S,C,K} 

Child vertex Vc ={R} 

Travelled way till now: D→S→C→K 

Distance travelled=628+372=1000 

Iteration 4: The adjacent edges with root vertex K 

and child vertex are KR with distance 303. We 

choose KR and mark R as root vertex. 

Root vertex set Vs ={D,S,C,K,R} 

Child vertex Vc ={} 

Travelled way till now: D→S→C→K→R 

Distance travelled=1000+303=1303 

Our child vertex set is empty. So, we return to the 

start vertex and complete the tour. Therefore, total 

distance travelled = 1303+245=1548 

And the shortest way to travel five cities is 

D→S→C→K→R→D  

V. Result Analysis 

Comparison of results of 5 city problem: 

Methods Result 
Number of 

cities 
Steps 

Brute 

force 
1548 5 12 

NNA 1548 5 5 

INNA 1548 5 4 

 

To test optimality of the problem solved section IV, 

we use an exact algorithm named brute force. As we 

can see from the table, for this particular problem we 

get optimal solution with both NNA and INNA. The 

uncertainty of getting optimal solution using NNA 

and INNA increases with the increase of the size of 

the problem. Usually, for n≥20 both NNA and INNA 

are not effective to get optimal solution.  
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VI. Conclusion 

 

This paper presents an improved form of Nearest 

Neighbor Algorithm. Since TSP is a P vs NP type 

problem, so the computational steps increase 

exponentially with the increase of the size of the 

problem. To avoid high time complexity, applying 

approximate algorithm for a near optimal solution is 

reasonable. NNA is best algorithm to obtain near 

optimal solution (sometimes optimal) for small size 

problems (n≤20). And INNA makes NNA more 

understandable and easily implementable for solving 

problems with equal efficiency and less 

computational steps. 
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