
 CSEIT1835159 | Received : 01 June 2018 | Accepted : 08 June 2018 | May-June-2018 [(3)5 : 668-672]

International Journal of Scientific Research in Computer Science, Engineering and Information Technology

© 2018 IJSRCSEIT | Volume 3 | Issue 5 | ISSN : 2456-3307

668

An Improved Nearest Neighbor Algorithm for Solving TSP
Emran Islam*1, Mariam Sultana2, Faruque Ahmed3

*1,2Research students, Department of Mathematics, Jahingirnagar University, Savar, Dhaka, Bangladesh
3Professor, Department of Mathematics, Jahingirnagar University, Savar, Dhaka, Bangladesh

ABSTRACT

Traveling salesman problem is one of the most important mathematical concepts having very high socio

economic impact. But since TSP is NP-complete, finding an optimal solution becomes very hard when problem

size increases. Conceptually TSP is very easy to understand but solving TSP is quite difficult than anyone can

imagine. In this paper we have represented an improved form of nearest neighbor algorithm for solving TSP.

We have also represented a comparative study between our proposed algorithm and original algorithm to test

efficiency.

Keywords : Traveling Salesman Problem, Approximate algorithms, NNA

I. INTRODUCTION

The traveling salesman problem is one of the most

widely studied optimization problems having very

dense historical background [1]. It is one kind of NP

hard problem. [2] This problem has become a testing

ground for new algorithms for its simplicity of

formulation. In TSP a bunch of cities, mutually

connected, are considered as a connected graph.

Distances between each city are given. Each city

represents as node and their distance represents as

arc. A salesman needs to visit each and every city

exactly once without making any repetition then

come back to the starting city, traveling minimum

distance.[3] Therefore, it is clear that TSP is a

minimization problem to find shortest path under

the condition that all cities are visited without

repetition and a coincidence happens to the starting

and ending city. Literature [4,5,6] shows that TSP is

widely connected with many fundamental problems

of computer science and engineering. For that reason,

finding an efficient algorithm to solve TSP is a major

concern for mathematicians and computer scientists

for decades [1]. There are four types of algorithms

for solving TSP: exact algorithms, heuristic

algorithms, approximate algorithms and

metaheuristics algorithms [7]. Solving TSP using

exact algorithm we always have an optimal solution.

[8] However, these type of algorithms are quite

complex and requires computer facility for large

problems. The other three types of algorithms can

obtain good solutions with less time complexity, but

it cannot be guarantee that the optimal solution will

be found [9,10]. The nearest-neighbor is one of the

very efficient algorithms. In this algorithm

computational steps increases in some reasonable

proportion with the size of the problem. But

computational process in NNA is quite difficult when

problem size is large. Section II and section III

represents original Nearest Neighbor Algorithm

(NNA) and our improved Nearest Neighbor

Algorithm (INNA).

II. Nearest Neighbor Algorithm

To solve TSP with a Nearest Neighbor Algorithm we

need to look at all the arcs coming out of the node

(city) that have not been visited and choose the next

http://ijsrcseit.com/

Volume 3, Issue 5, May-June-2018 | http:// ijsrcseit.com

Emran Islam et al. Int J S Res CSE & IT. 2018 May-June; 3(5) : 668-672

669

closest city, finally return to the starting city when

all the other cities are visited. To solve TSP using

Nearest Neighbor Algorithm we can use the

following steps: [11]

Step 1: Pick any starting node.

Step 2: Look at all the arcs coming out of the

starting node that have not been visited

and choose the next closest node.

Step 3: Repeat the process until all the nodes

have been visited at least once.

Step 4: Check and see if all nodes are visited. If

so return to the starting point which

gives us a tour.

Step 5: Draw and write down the tour, and

calculate the distance of the tour.

III. Proposed Algorithm

Here is a proposal of improved Nearest Neighbor

Algorithm:

Step 1: Construct, if necessary, the given

network G=(V,E) where V is the

vertex set (cities) and E is the edges set

(corresponding distances).

Step 2: Pick the designated root vertex .

Set Vs={s}.

Step 3: Determine child vertex set of current

root vertex Vc=V-Vs

Step 4: If the child vertex set Vc is not empty,

goto step-5. If Vc is empty, goto step 7.

Step 5: Make a sorted list of all adjacent edges

joining the root vertex and child

vertices in ascending order. Choose the

edge with minimum value (distance,

cost etc). If there is more than one

edge with same value, it’s okay to

select randomly.

Step 6: Mark the vertex adjacent with the

selected edge at step-4 as next root

vertex and update Vs. Go to step 3.

Step 7: Return to the designated root vertex

and hence the optimal solution

obtained.

IV. Implementation of Algorithms

For the implementation of NNA and our propose

algorithm on a specific example, we construct a five

city problem.

Consider the following distance matrix of five major

cities of Bangladesh- Dhaka, Khulna, Chittagong,

Sylhet and Rajshahi.[12] We use first latters of the

cities to represent the distance matrices.

 D K C S R

D ∞ 280 260 245 245

K 280 ∞ 372 495 303

C 260 372 ∞ 383 522

S 245 495 383 ∞ 462

R 245 303 522 462 ∞

We consider Dhaka as our start vertex. Therefore,

task of the problem is to find shortest path visiting all

other cities only once and the tour must end at

Dhaka.

A. Solution using NNA

The corresponding graphs considering each city a

node and denoting with their first latter is as follows:

Start: We start from Dhaka.

Volume%203,%20Issue%203%20|%20March-April-2018%20
http://www.ijsrcseit.com/

Volume 3, Issue 5, May-June-2018 | http:// ijsrcseit.com

Emran Islam et al. Int J S Res CSE & IT. 2018 May-June; 3(5) : 668-672

670

First step: From Dhaka its nearest vertex is Sylhet

and Rajshahi with same distance 245 km. So,

according to the algorithm we may choose randomly

one of them. We choose Sylhet and mark it as visited.

Second step: From Sylhet its nearest vertex is

Chittagong with distance 383 km. we choose

Chittagong and mark it as visited.

Third step: From Chittagong its nearest vertex is

Khulna with distance 383 km. Because we can’t

choose Dhaka with distance 260km since it will

create a sub tour. We choose Khulna and mark it as

visited.

Fourth step: From Khulna the nearest neighbor is

Rajshahi with distance 303 km.

Final step: Since all vertices are visited, we come

back to Dhaka.

Therefore our optimal route is D→S→C→K→R→D

with total distance = 245 + 383 + 372 + 303 + 245

=1548

B. Solution Using Proposed Algorithm

Initialization: We construct following graph from the

given distance matrix.

Volume%203,%20Issue%203%20|%20March-April-2018%20
http://www.ijsrcseit.com/

Volume 3, Issue 5, May-June-2018 | http:// ijsrcseit.com

Emran Islam et al. Int J S Res CSE & IT. 2018 May-June; 3(5) : 668-672

671

We want to start our tour from Dhaka. So, our

designated start vertex is D. Therefore,

Root vertex set Vs={D}

Child vertex Set Vc=V-Vs={S,C,K,R}

Distance travelled = 0

Iteration 1: Sorted list of all adjacent edges joining

the root vertex D and child vertices in ascending

order,

DS 245

DR 245

DC 260

DK 280

We may choose DS or DR. We choose DS and mark S

as root vertex.

Root vertex set Vs={D,S}

Child vertex Vc={C,K,R}

Travelled way till now: D→S

Distance travelled=0+245=245

Iteration 2: The adjacent edges with root vertex S and

child vertices are SC, SK, SR. Sorting them in

ascending order according to their distance we have,

SC 383

SR 462

SK 495

We choose SC and mark C as root vertex.

Root vertex set Vs={D,S,C}

Child vertex Vc={,K,R}

Travelled way till now: D→S→C

Distance travelled=245+383=628

Iteration 3: The adjacent edges with root vertex C

and child vertices are CK,CR. Sorting them in

ascending order according to their distance we have,

CK 372

CR 522

We choose CK and mark K as root vertex.

Root vertex set Vs ={D,S,C,K}

Child vertex Vc ={R}

Travelled way till now: D→S→C→K

Distance travelled=628+372=1000

Iteration 4: The adjacent edges with root vertex K

and child vertex are KR with distance 303. We

choose KR and mark R as root vertex.

Root vertex set Vs ={D,S,C,K,R}

Child vertex Vc ={}

Travelled way till now: D→S→C→K→R

Distance travelled=1000+303=1303

Our child vertex set is empty. So, we return to the

start vertex and complete the tour. Therefore, total

distance travelled = 1303+245=1548

And the shortest way to travel five cities is

D→S→C→K→R→D

V. Result Analysis

Comparison of results of 5 city problem:

Methods Result
Number of

cities
Steps

Brute

force
1548 5 12

NNA 1548 5 5

INNA 1548 5 4

To test optimality of the problem solved section IV,

we use an exact algorithm named brute force. As we

can see from the table, for this particular problem we

get optimal solution with both NNA and INNA. The

uncertainty of getting optimal solution using NNA

and INNA increases with the increase of the size of

the problem. Usually, for n≥20 both NNA and INNA

are not effective to get optimal solution.

Volume%203,%20Issue%203%20|%20March-April-2018%20
http://www.ijsrcseit.com/

Volume 3, Issue 5, May-June-2018 | http:// ijsrcseit.com

Emran Islam et al. Int J S Res CSE & IT. 2018 May-June; 3(5) : 668-672

672

VI. Conclusion

This paper presents an improved form of Nearest

Neighbor Algorithm. Since TSP is a P vs NP type

problem, so the computational steps increase

exponentially with the increase of the size of the

problem. To avoid high time complexity, applying

approximate algorithm for a near optimal solution is

reasonable. NNA is best algorithm to obtain near

optimal solution (sometimes optimal) for small size

problems (n≤20). And INNA makes NNA more

understandable and easily implementable for solving

problems with equal efficiency and less

computational steps.

VII. REFERENCES

1. Emran Islam, Mariam Sultana, Faruque Ahmed "A

Tale of Revolution: Discovery and Development of

TSP", International Journal of Mathematics Trends

and Technology (IJMTT). V57(2):136-139 May 2018.

2. Davendra, Donald, et al. "Chaos driven evolutionary

algorithm for the traveling salesman problem."

Traveling Salesman Problem, Theory and Applications

(2010): 55-70.

3. Gutin, Gregory, and Abraham P. Punnen, eds. The

traveling salesman problem and its variations. Vol. 12.

Springer Science & Business Media, 2006.

4. Lenstra, Jan Karel, and AHG Rinnooy Kan. "Some

simple applications of the travelling salesman

problem." Journal of the Operational Research Society

26.4 (1975): 717-733.

5. Punnen, Abraham P. "The traveling salesman

problem: Applications, formulations and variations."

The traveling salesman problem and its variations.

Springer, Boston, MA, 2007. 1-28.

6. Lenstra, Jan Karel. "Clustering a data array and the

traveling-salesman problem." Operations Research

22.2 (1974): 413-414.

7. Kizilates, Gzde, and Fidan Nuriyeva. "On the nearest

neighbor algorithms for the traveling salesman

problem." Advances in Computational Science,

Engineering and Information Technology. Springer,

Heidelberg, 2013. 111-118.

8. Laporte, Gilbert. "The traveling salesman problem: An

overview of exact and approximate algorithms."

European Journal of Operational Research 59.2 (1992):

231-247.

9. Johnson, D. S. "Performance guarantees for

heuristics." The Traveling Salesman Problem: A.

Guided Tour of Combinatorial Optimization (1985):

145-180

10. Golden, Bruce, et al. "Approximate traveling salesman

algorithms." Operations research 28.3-part-ii (1980):

694-711.

11. Taiwo, Oloruntoyin Sefiu, et al. "IMPLEMENTATION

OF HEURISTICS FOR SOLVING TRAVELLING

SALESMAN PROBLEM USING NEAREST

NEIGHBOUR ANDNEAREST

INSERTIONAPPROACHES." (2013).

12. Source of distances of five cities:

www.distanceto.com"

Volume%203,%20Issue%203%20|%20March-April-2018%20
http://www.ijsrcseit.com/

