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ABSTRACT 

 

Apache Spark, a framework similar to the Von Neumann architecture. It has an efficient implementation of in-

memory computations and iterative optimization is processed to analyze large volume of data. Data captured at 

high velocity and from variety of different sources known as Big Data. Such big data can be partitioned and 

clustered, based on parameters of the data. The parameterized clusters are enhanced under clustering 

algorithms for better outcomes. In this paper the current approach optimize computation over random 

sampling algorithms, where empirical evidence exhibit the significant change in computation of partition 

algorithms. Computations can be carried out in iterative procedure for wide variety of datasets retaining an 

abstraction known as Resilient Distributed Datasets (RDDs). 
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I. INTRODUCTION 

 

Many end-to-end big data frameworks process 

voluminous data like Apache Hadoop, Apache Flink, 

Apache Storm, Apache Samza and Apache Spark, 

among all these open source frameworks Apache 

Spark yields better computation results when 

compared to other frameworks[1]. Even in-memory 

computations workload can be carried on both batch 

processing and stream processing. For example, 

fraudulent banking transaction can be figured out 

whether the genuine customer is performing the 

transactions irrespective of the geographical locations. 

 

In conventional approach, Fuzzy C-Means (FCM) 

clustering technique partition the data is divided into 

clusters based on the inter related data parameters. 

Here, the actual inconsistency arises with soft 

clustering. Overlapping of the cluster center with 

neighbouring clusters empirically results, the 

converse technique of the FCM algorithm[2]. A lot of 

partitional based algorithms like Possibilistic C-

Means (PCM), Fuzzy Possibilistic C-Means 

Algorithm (FPCM) are proposed for computing 

entire big data, where the results expected are not 

relevant[1]. 

 

This paper presents enhanced Scalable Random 

Sampling with Iterative Optimization Fuzzy C-

Means algorithm (SRSIO-FCM) [1] which is an 

adopted form of classic clustering model. Vagueness 

in calculating cluster centers and extending the 
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approach to address very large data results 

overlapping of clusters. FCM clustering like the 

Literal Fuzzy C-Means with Alternating 

Optimization (LFCM/AO) is designed to opt the 

number of cluster centers randomly by the user, On-

line Fuzzy C-Medoids (OFCMD) and History-based 

Online Fuzzy C-Medoids (HOFCMD) [1, 2]. 

 

In current scenario, computations are carried out on 

big data with respect to data sets where clusters are 

derived with centroids C by choosing randomly in 

the initial stage. Such that data points belong to one 

cluster are more similar than that of other clusters, 

this process completely enhanced in R analytical 

studio. Further, iteratively optimized by holding the 

threshold value on the membership matrix in 

PySpark, python wrapper for spark. 

 

The rest of the paper organized as follows. In section 

II overview about various clustering algorithms is 

presented. Section III, presents about Apache Spark 

and working of scalable algorithm. Section IV shows 

the empirical results and performance comparison 

among the frameworks MapReduce(MR), Spark and 

Message Passing Interface (MPI). Finally, section V 

concludes some possible enhancements and future 

work. 

 

II. RELATED WORK 

 

Many approaches are available for clustering large 

databases like Clustering Using Representatives 

(CURE) [1]which is less sensitive towards the outliers, 

Clustering Large Applications (CLARA) [1] the 

quality among every object is measured over all the 

data set is subject as one objective function. 

 

Over years, various types of algorithms have been 

proposed in multi-dimensional clustering. Formally, 

minor changes in objective function detect 

insignificant types of clusters in FCM clustering like 

Fuzzy C-Elliptotypes (FCE) to obtain linear clusters 

and Fuzzy C-Shells (FCS) algorithm to derive circles. 

Fuzzy C-Rectangular Shells (FCRS) algorithm is 

designed to detect rectangular clusters. 

Bezdek proposed fuzzy clustering algorithm has been 

designed to extract the membership degree from data 

sets gathered are divided into groups using Eq. (1), 

membership degree is represented by U and cluster 

center by V, splitted in to k number of partitions, 

cluster centers are classified from (v1, v2, v3......, vn) 

and the objective function related as 

 

Jm (U,V) =∑ ∑ 
   

 
   (Uik)m║xk-vi║2  (1) 

1 ≤ m ≤ ∞ 

 

Kaufman and Rousseuw developed Partition Around 

Mediods (PAM) which is robust in context of CURE 

and K-means. Bezdek proposed the FCM clustering 

algorithm (FCM) [3,4] to partition the data points 

and to minimize the dissimilarity measure. In 

partition clustering algorithm, data points p are 

splitted into k partitions, centroid ci, mean of the 

cluster mi and each partition denotes a cluster, such 

partitions are derived on an objective function to 

minimize square-error criterion,  

 

E =∑ ∑      
 
   ║p- mi║2 (2) 

 

 

However, in the proposed, to reduce the 

inconsistency data cleaning is performed on the 

initial data sets to avoid the dissimilarity measure. 

Algorithms are implemented in multi-level to re-

estimate features of parameters in hard clustering. 

The constraints like limiting the number of clusters 

for larger data sets, maximum number of iterations to 

obtain the final data set, computing the threshold 

value inter related with the size of data sets enhance 

to reduce lazy evaluation or long computation time. 
 

III. PROPOSED WORK 

 

Most of the cluster centers are overlapped just 

because of randomly choosing the data points in the 

data sets. Here after, the enhanced sampling method 
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RSIO-FCM [1] forms the cluster centers for various 

data parameters, over all big data. In fact those data 

centers are not relatively projecting expected results. 

Thus, the major problem in choosing the data point 

over the data sets can be overcome by sampling 

method, SRSIO-FCM [1, 4] along with Apache Spark 

by implementing iteratively optimizing technique. 

 

Initially, the big data is classified into data subsets. 

Figure 1 represents the framework of the work flow, 

choosing the data point randomly in the data set is as 

similar to the previous sampling methods. Upon 

choosing the data point for the first cluster say V1, 

the membership matrix Ui,j is calculated on the data 

set parameters for the next iteration of the cluster 

center. Any deviation in the parameters of the initial 

cluster V1 and the secondary cluster V2 can be 

stipulated by considering related parameters which 

are common to both clusters. After clustering the 

two data sets the relevant change of the both clusters 

and change in the membership matrix taken into 

consideration for iteration. Further, if the process is 

iterated for rest of the data sets the information 

related to membership matrix leads as a bottleneck 

for optimize computations as of iterations continues 

over the sets. 

 

At this point, as the number of iterations carried out 

on data sets shows a direct impact on membership 

matrix and its size. The information retained by the 

membership matrix leads to insignificant results due 

to its size, in certain cases equally to the partitioned 

data sets. As of the iterative computations [7] are 

carried over in-memory as similar to Von Neumann 

architecture, in fact the data is brought on to the 

main memory for faster computations. The 

parameterized information of the data sets increases 

which leads to further workload of the process. To 

overcome this problem, threshold value with 

respective to the data sets is considered as a objective 

function for evaluation. Further, the cluster centers 

of remaining data sets will also be affected with 

threshold value. Here the termination criteria, 𝜖 a 

predefined constant taken as 𝜖 = 10-3 [1]. 

 

Cluster centers with respect to termination criteria, 

║V' - V║<𝜖 

 

Objective function to compute cluster membership, 

the process initiated only for the data sets with 

certainty to produce and extend the partition and 

compute the cluster centers V. 

 i.e., Ui,j =1. 

      
  

 
   

 
 

  
   

∑ ║ 
 
   

 
║

  
   

 

   

     (3) 

 

Data sets that met the termination value with respect 

to data set or threshold value related to the 

predefined constant, inter related with the data sets 

are posted as the final solution sets are cluster centers. 

The framework tries to resolve the issues like out of 

memory, time out for iterative optimization using 

termination criteria and projecting final clusters with 

Large Data volume (LD). Lazy evaluation in case of 

stream input data while computations are already in 

progress. 

 

 

 

Figure 1: Overview of Scalable Clustering 

Framework 
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A step-by-step procedure of the scalable random 

sampling with iterative optimization [8] for the initial 

cluster computation is listed below, where data set X, 

cluster center Vi, centroid Ci and membership matrix 

Ui,j. The theme of algorithm focus more on 

computations of membership matrix and calculating 

cluster centers. 

 

ALGORITHM: Scalable Random Sampling with 

Iterative Optimization - FCM 

 

Input: Data sets X 

Output: Final Cluster 

 

1. Function partition_Dataset(V, X, C) 

2. Load data points Xi  

3. Partition (x1, x2, x3, x4,....., xn)← X 

4. Calculate the cluster centers on initial data 

point 'x1' 

 if(m >1) 

 {  

 FCM applied on the data sets 

 } 

5.  else 

 goto step:6 

6. Calculate membership Ui,j of cluster 

Compute the membership for initial 

iterations Ui,j // parameters evaluation of 

matrix. 

//not for all values of i,j. 

 {  

  if (MI' = ∑ Xi/2 )  

// MI always less than the number data points 

in  the cluster  

} 

7. Return MI, Ui,j. 

 

IV. RESULTS 

A. Environment Setup: 

The implementation of the SRSIO-FCM algorithm is 

carried on Spark 2.3 along with python for iterative 

optimization. PyCharm IDE is integrated with the 

Spark and R analytical data. Experiments carried out 

on a cluster executed on servers connected with 32 

gega bytes of primary memory, 2.40 GHz Intel® Core 

CPUs with maximum memory bandwidth 

approximately of 25.6 GB/s with Error-Correcting 

Code (ECC) memory. 

 

Data servers are occupied with the small and large 

clusters [8] concurrently for in-memory 

computations during initial clustering phase. The 

Spark framework automatically handles the flow of 

computation with huge memory bandwidth. 

 

B. Evaluation Results: 

To inspect the performance of algorithm, initially 

observations related to the group smokers with six 

different parameters are summarized on R studio, 

figure 2 represent the parameterized data before 

applying the sampling method. The data with the 

null values is truncated for better results, this process 

is called data cleaning. Test data for data sets are not 

taking into considerations, in fact the reduction on 

initial data set yields inappropriate results by 

truncation of parameters. Table 1 shows the raw data 

that is gathered from the distributed cloud points and 

also from Comprehensive R Archive Network 

(CARN). 

 

 

Figure 2. Parameterized Data before Clustering 

 

Table 1 represents the information related to the 

three data sets D1, D2, D3 where the Membership 

Information (MI), flat file size and binary file size in 
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gigabytes, are widely varied to compare the results 

with other frameworks like Apache Hadoop with 

MapReduce (MR) technique and Message Passing 

Interface (MPI). 

 

Table 1: Input Data Sets 

 

Data Sets MI Flat Flie Size Binary Flie Size 

D1 2048 2.3 GB 1.2 GB 

D2 3276 4 GB 2.5 GB 

D3 4096 3.2 GB 2.2 GB 

 

The clustering with respect to the parameters which 

enhances scalable results for forming membership 

matrix. The cluster with parameters enables 

membership matrix to compute an accurate centroid 

Ci and cluster centers for further. Figure 3 shows the 

membership information with respect to parameters. 

 

 
Figure 3. Membership Information with respect to 

Parameters 

To evaluate the scalability, Spark program is initiated 

along with python in PyCharm to reschedule the 

server in case of slow response or server crashing 

cases. The performance is compared with other big 

data frameworks like Hadoop MapReduce and MPI. 

MPI generates large amount of intermediate data 

which cause the abrupt expansion of computation 

memory and leads to a hassle. Such cases can be 

easily handled with MI matrix objective function. 

 

Figure 4. Performance Evaluation 

 

C. Performance Comparison: 

To compare the performance, conventionally several 

numerical analysis software's like R, WEKA, FreeMat 

an open-source MATLAB are available. The current 

scenario adopts R studio to compare the number of 

clusters formed with different data sets D1, D2, D3 

varied with different input file size and binary file 

size as listed in table 1. 

 

 
Figure 5. Scalability of Proposed Algorithm SRSIO-

FCM 

 

The above graph shows the results, x-axis is the 

number of clusters and y-axis plotted with the ratio 

execution of time in seconds. The graph illustrates 

the decrease in the execution time after iteratively 

optimizing data sets. However, one more notable 

aspect is that, data sets with different binary file sizes 
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lead to form a similar number of cluster centers and 

saturates at one point of time. 

 

V. CONCLUSIONS & FUTURE WORK 

 

This proposed work concludes in such a way that 

comparison of results with higher data sets without 

effecting the quality of the cluster. The key role of 

the eliminating the membership information at 

certain point is to avoid inappropriate results and 

workload to the next cluster centers. 

 

In the terms of future work, the two aspects to be 

considered mainly: Primarily, optimizing the 

proposed algorithm SRSIO-FCM, reliability and fault-

tolerance capabilities over the objective function 

achieves good scalability on various size. Secondarily, 

dynamic scheduling of tasks along with RDD feature 

of Apache Spark at abrupt failure while long duration 

computations. Just in case, which require ample 

amount of computation time again and again. 
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