
CSEIT1835189 | Received :05 June 2018 | Accepted :15 June2018 | May-June-2018 [(3)5: 833-838]

International Journal of Scientific Research in Computer Science, Engineering and Information Technology

© 2018 IJSRCSEIT | Volume 3 | Issue 5| ISSN : 2456-3307

833

ABSTRACT

Apache Spark, a framework similar to the Von Neumann architecture. It has an efficient implementation of in-

memory computations and iterative optimization is processed to analyze large volume of data. Data captured at

high velocity and from variety of different sources known as Big Data. Such big data can be partitioned and

clustered, based on parameters of the data. The parameterized clusters are enhanced under clustering

algorithms for better outcomes. In this paper the current approach optimize computation over random

sampling algorithms, where empirical evidence exhibit the significant change in computation of partition

algorithms. Computations can be carried out in iterative procedure for wide variety of datasets retaining an

abstraction known as Resilient Distributed Datasets (RDDs).

Keywords :Clustered Technique, Iterative Computation, Apache Spark, Membership Matrix, PySpark

I. INTRODUCTION

Many end-to-end big data frameworks process

voluminous data like Apache Hadoop, Apache Flink,

Apache Storm, Apache Samza and Apache Spark,

among all these open source frameworks Apache

Spark yields better computation results when

compared to other frameworks[1]. Even in-memory

computations workload can be carried on both batch

processing and stream processing. For example,

fraudulent banking transaction can be figured out

whether the genuine customer is performing the

transactions irrespective of the geographical locations.

In conventional approach, Fuzzy C-Means (FCM)

clustering technique partition the data is divided into

clusters based on the inter related data parameters.

Here, the actual inconsistency arises with soft

clustering. Overlapping of the cluster center with

neighbouring clusters empirically results, the

converse technique of the FCM algorithm[2]. A lot of

partitional based algorithms like Possibilistic C-

Means (PCM), Fuzzy Possibilistic C-Means

Algorithm (FPCM) are proposed for computing

entire big data, where the results expected are not

relevant[1].

This paper presents enhanced Scalable Random

Sampling with Iterative Optimization Fuzzy C-

Means algorithm (SRSIO-FCM) [1] which is an

adopted form of classic clustering model. Vagueness

in calculating cluster centers and extending the

Partitional Based Clustering Algorithms on Big Data Using

Apache Spark
N. Sukumar1, Prof. A. Ananda Rao2, Dr. P. Radhika Raju3

*1M.Tech Scholar, Department of CSE, JNTUA College of Engineering, Ananthapuramu, Andhra Pradesh,

India
2Professor, Department of CSE, JNTUA College of Engineering, Ananthapuramu, Andhra Pradesh, India

3Ad-hoc Assistant Professor, Department of CSE, JNTUA College of Engineering, Ananthapuramu, Andhra

Pradesh, India

Volume 3, Issue 5, May-June-2018| http://ijsrcseit.com

N. Sukumaret al. Int J S Res CSE & IT. 2018 May-June;3(5):833-838

834

approach to address very large data results

overlapping of clusters. FCM clustering like the

Literal Fuzzy C-Means with Alternating

Optimization (LFCM/AO) is designed to opt the

number of cluster centers randomly by the user, On-

line Fuzzy C-Medoids (OFCMD) and History-based

Online Fuzzy C-Medoids (HOFCMD) [1, 2].

In current scenario, computations are carried out on

big data with respect to data sets where clusters are

derived with centroids C by choosing randomly in

the initial stage. Such that data points belong to one

cluster are more similar than that of other clusters,

this process completely enhanced in R analytical

studio. Further, iteratively optimized by holding the

threshold value on the membership matrix in

PySpark, python wrapper for spark.

The rest of the paper organized as follows. In section

II overview about various clustering algorithms is

presented. Section III, presents about Apache Spark

and working of scalable algorithm. Section IV shows

the empirical results and performance comparison

among the frameworks MapReduce(MR), Spark and

Message Passing Interface (MPI). Finally, section V

concludes some possible enhancements and future

work.

II. RELATED WORK

Many approaches are available for clustering large

databases like Clustering Using Representatives

(CURE) [1]which is less sensitive towards the outliers,

Clustering Large Applications (CLARA) [1] the

quality among every object is measured over all the

data set is subject as one objective function.

Over years, various types of algorithms have been

proposed in multi-dimensional clustering. Formally,

minor changes in objective function detect

insignificant types of clusters in FCM clustering like

Fuzzy C-Elliptotypes (FCE) to obtain linear clusters

and Fuzzy C-Shells (FCS) algorithm to derive circles.

Fuzzy C-Rectangular Shells (FCRS) algorithm is

designed to detect rectangular clusters.

Bezdek proposed fuzzy clustering algorithm has been

designed to extract the membership degree from data

sets gathered are divided into groups using Eq. (1),

membership degree is represented by U and cluster

center by V, splitted in to k number of partitions,

cluster centers are classified from (v1, v2, v3......, vn)

and the objective function related as

Jm (U,V) =∑ ∑

 (Uik)m║xk-vi║2 (1)

1 ≤ m ≤ ∞

Kaufman and Rousseuw developed Partition Around

Mediods (PAM) which is robust in context of CURE

and K-means. Bezdek proposed the FCM clustering

algorithm (FCM) [3,4] to partition the data points

and to minimize the dissimilarity measure. In

partition clustering algorithm, data points p are

splitted into k partitions, centroid ci, mean of the

cluster mi and each partition denotes a cluster, such

partitions are derived on an objective function to

minimize square-error criterion,

E =∑ ∑

 ║p- mi║2 (2)

However, in the proposed, to reduce the

inconsistency data cleaning is performed on the

initial data sets to avoid the dissimilarity measure.

Algorithms are implemented in multi-level to re-

estimate features of parameters in hard clustering.

The constraints like limiting the number of clusters

for larger data sets, maximum number of iterations to

obtain the final data set, computing the threshold

value inter related with the size of data sets enhance

to reduce lazy evaluation or long computation time.

III. PROPOSED WORK

Most of the cluster centers are overlapped just

because of randomly choosing the data points in the

data sets. Here after, the enhanced sampling method

Volume 3, Issue 5, May-June-2018| http://ijsrcseit.com

N. Sukumaret al. Int J S Res CSE & IT. 2018 May-June;3(5):833-838

835

RSIO-FCM [1] forms the cluster centers for various

data parameters, over all big data. In fact those data

centers are not relatively projecting expected results.

Thus, the major problem in choosing the data point

over the data sets can be overcome by sampling

method, SRSIO-FCM [1, 4] along with Apache Spark

by implementing iteratively optimizing technique.

Initially, the big data is classified into data subsets.

Figure 1 represents the framework of the work flow,

choosing the data point randomly in the data set is as

similar to the previous sampling methods. Upon

choosing the data point for the first cluster say V1,

the membership matrix Ui,j is calculated on the data

set parameters for the next iteration of the cluster

center. Any deviation in the parameters of the initial

cluster V1 and the secondary cluster V2 can be

stipulated by considering related parameters which

are common to both clusters. After clustering the

two data sets the relevant change of the both clusters

and change in the membership matrix taken into

consideration for iteration. Further, if the process is

iterated for rest of the data sets the information

related to membership matrix leads as a bottleneck

for optimize computations as of iterations continues

over the sets.

At this point, as the number of iterations carried out

on data sets shows a direct impact on membership

matrix and its size. The information retained by the

membership matrix leads to insignificant results due

to its size, in certain cases equally to the partitioned

data sets. As of the iterative computations [7] are

carried over in-memory as similar to Von Neumann

architecture, in fact the data is brought on to the

main memory for faster computations. The

parameterized information of the data sets increases

which leads to further workload of the process. To

overcome this problem, threshold value with

respective to the data sets is considered as a objective

function for evaluation. Further, the cluster centers

of remaining data sets will also be affected with

threshold value. Here the termination criteria, 𝜖 a

predefined constant taken as 𝜖 = 10-3 [1].

Cluster centers with respect to termination criteria,

║V' - V║<𝜖

Objective function to compute cluster membership,

the process initiated only for the data sets with

certainty to produce and extend the partition and

compute the cluster centers V.

 i.e., Ui,j =1.

∑ ║

║

 (3)

Data sets that met the termination value with respect

to data set or threshold value related to the

predefined constant, inter related with the data sets

are posted as the final solution sets are cluster centers.

The framework tries to resolve the issues like out of

memory, time out for iterative optimization using

termination criteria and projecting final clusters with

Large Data volume (LD). Lazy evaluation in case of

stream input data while computations are already in

progress.

Figure 1: Overview of Scalable Clustering

Framework

Volume 3, Issue 5, May-June-2018| http://ijsrcseit.com

N. Sukumaret al. Int J S Res CSE & IT. 2018 May-June;3(5):833-838

836

A step-by-step procedure of the scalable random

sampling with iterative optimization [8] for the initial

cluster computation is listed below, where data set X,

cluster center Vi, centroid Ci and membership matrix

Ui,j. The theme of algorithm focus more on

computations of membership matrix and calculating

cluster centers.

ALGORITHM: Scalable Random Sampling with

Iterative Optimization - FCM

Input: Data sets X

Output: Final Cluster

1. Function partition_Dataset(V, X, C)

2. Load data points Xi

3. Partition (x1, x2, x3, x4,....., xn)← X

4. Calculate the cluster centers on initial data

point 'x1'

 if(m >1)

 {

 FCM applied on the data sets

 }

5. else

 goto step:6

6. Calculate membership Ui,j of cluster

Compute the membership for initial

iterations Ui,j // parameters evaluation of

matrix.

//not for all values of i,j.

 {

 if (MI' = ∑ Xi/2)

// MI always less than the number data points

in the cluster

}

7. Return MI, Ui,j.

IV. RESULTS

A. Environment Setup:

The implementation of the SRSIO-FCM algorithm is

carried on Spark 2.3 along with python for iterative

optimization. PyCharm IDE is integrated with the

Spark and R analytical data. Experiments carried out

on a cluster executed on servers connected with 32

gega bytes of primary memory, 2.40 GHz Intel® Core

CPUs with maximum memory bandwidth

approximately of 25.6 GB/s with Error-Correcting

Code (ECC) memory.

Data servers are occupied with the small and large

clusters [8] concurrently for in-memory

computations during initial clustering phase. The

Spark framework automatically handles the flow of

computation with huge memory bandwidth.

B. Evaluation Results:

To inspect the performance of algorithm, initially

observations related to the group smokers with six

different parameters are summarized on R studio,

figure 2 represent the parameterized data before

applying the sampling method. The data with the

null values is truncated for better results, this process

is called data cleaning. Test data for data sets are not

taking into considerations, in fact the reduction on

initial data set yields inappropriate results by

truncation of parameters. Table 1 shows the raw data

that is gathered from the distributed cloud points and

also from Comprehensive R Archive Network

(CARN).

Figure 2. Parameterized Data before Clustering

Table 1 represents the information related to the

three data sets D1, D2, D3 where the Membership

Information (MI), flat file size and binary file size in

Volume 3, Issue 5, May-June-2018| http://ijsrcseit.com

N. Sukumaret al. Int J S Res CSE & IT. 2018 May-June;3(5):833-838

837

gigabytes, are widely varied to compare the results

with other frameworks like Apache Hadoop with

MapReduce (MR) technique and Message Passing

Interface (MPI).

Table 1: Input Data Sets

Data Sets MI Flat Flie Size Binary Flie Size

D1 2048 2.3 GB 1.2 GB

D2 3276 4 GB 2.5 GB

D3 4096 3.2 GB 2.2 GB

The clustering with respect to the parameters which

enhances scalable results for forming membership

matrix. The cluster with parameters enables

membership matrix to compute an accurate centroid

Ci and cluster centers for further. Figure 3 shows the

membership information with respect to parameters.

Figure 3. Membership Information with respect to

Parameters

To evaluate the scalability, Spark program is initiated

along with python in PyCharm to reschedule the

server in case of slow response or server crashing

cases. The performance is compared with other big

data frameworks like Hadoop MapReduce and MPI.

MPI generates large amount of intermediate data

which cause the abrupt expansion of computation

memory and leads to a hassle. Such cases can be

easily handled with MI matrix objective function.

Figure 4. Performance Evaluation

C. Performance Comparison:

To compare the performance, conventionally several

numerical analysis software's like R, WEKA, FreeMat

an open-source MATLAB are available. The current

scenario adopts R studio to compare the number of

clusters formed with different data sets D1, D2, D3

varied with different input file size and binary file

size as listed in table 1.

Figure 5. Scalability of Proposed Algorithm SRSIO-

FCM

The above graph shows the results, x-axis is the

number of clusters and y-axis plotted with the ratio

execution of time in seconds. The graph illustrates

the decrease in the execution time after iteratively

optimizing data sets. However, one more notable

aspect is that, data sets with different binary file sizes

Volume 3, Issue 5, May-June-2018| http://ijsrcseit.com

N. Sukumaret al. Int J S Res CSE & IT. 2018 May-June;3(5):833-838

838

lead to form a similar number of cluster centers and

saturates at one point of time.

V. CONCLUSIONS & FUTURE WORK

This proposed work concludes in such a way that

comparison of results with higher data sets without

effecting the quality of the cluster. The key role of

the eliminating the membership information at

certain point is to avoid inappropriate results and

workload to the next cluster centers.

In the terms of future work, the two aspects to be

considered mainly: Primarily, optimizing the

proposed algorithm SRSIO-FCM, reliability and fault-

tolerance capabilities over the objective function

achieves good scalability on various size. Secondarily,

dynamic scheduling of tasks along with RDD feature

of Apache Spark at abrupt failure while long duration

computations. Just in case, which require ample

amount of computation time again and again.

VI. REFERENCES

[1] Neha Bharill, Aruna Tiwari and Aayushi, "Fuzzy

Based Scalable Clustering Algorithms for

Handling big data using Apache Spark". IEEE

Transactions on 2016.

[2] R. Krishnapuram, A. Joshi, O. Nasraoui, and L. Yi,

―Low complexity fuzzy relational clustering

algorithms for web mining,‖ IEEE Transactions

on Fuzzy Systems, vol. 9, no. 4, pp. 595–607,

2001.

[3] T.C. Havens, J.C. Bezdek, C. Leckie, L.O. Hall

and M. Palaniswami, "Fuzzy c-means algorithms

for very large data," IEEE Transactions on Fuzzy

Systems, pp.1130-1146.

[4] J.F. Kolen and T. Hutcheson, ―Reducing the time

complexity of the fuzzy c-means algorithm,‖

IEEE Transactions on Fuzzy Systems, vol. 10, no.

2, pp. 263–267, 2002.

[5] Jain Fu, Junwei Sun, Kaiyuan Wang, "SPARK—A

Big Data Processing Platform for Machine

Learning" 2017. IEEE Conference.

[6] Swarndeep Saket J, Dr. Sharnil Pandya,"An

Overview of Partitioning Algorithms in

 Clustering Techniques". IJARCET June, 2016.

[7] Sumin Hong, Woohyuk Choi, Won-Ki Jeong,

"GPU in-memory processing using Spark for

iterative computation", 2017 17th IEEE/ACM.

[8] "HaLoop: Efficient Iterative Data Processing on

LargeClusters", Yingyi Bu, Bill Howe, Magdalena

Balazinska, Michael D. Ernst, 2010.

