
CSEIT1835240 | Received : 07 June 2018 | Accepted : 20 June 2018 | May-June-2018 [(3)5 : 941-948]

International Journal of Scientific Research in Computer Science, Engineering and Information Technology

© 2018 IJSRCSEIT | Volume 3 | Issue 5 | ISSN : 2456-3307

941

Inducing Vulnerability Testing to Enhance Performance

Dr. Selvakumar. S, Ph.D. 1, Dereje Regassa2, Dr. S. Subburam, Ph.D. 3
1Department of Computer Science & Engineering, School of Electrical Engineering & Computing

Adama Science and Technology University, Adama, Ethiopia
2Dean, School of Electrical Engineering and Computing, Computer Science and Engineering Program

Adama Science & Technology University, Adama, Ethiopia
3Department of Computer Science and Engineering, Prince Shri Venkateshwara Padmavathy Engineering

College, Chennai, India

ABSTRACT

Software engineering principles and practice are primarily focused in a conceptual environment where the

entire software as a whole is scrutinized to identify vulnerabilities. There are many inadequacies of such

behavior based software engineering as such conceptual software engineering is to integrate the cause of such

cases into the complete series of existing and promising software engineering principles and practices. This

model is to generate a testing tool that features in identifying vulnerabilities to increase the performance of the

software. This is done by trying out the various known sequence, and the results are checked for consistency.

Since systems grow in size and complexity, the performance-based vulnerability is becoming a more

challenging task. This model is step by step validation processes that are induced to generate the vulnerability

prediction tool for the software during its development process. This tool is used to identify vulnerability to

provide software quality assurance. This is done by studying most of the known computer attacks and the

safeguard measure against such vulnerabilities is applied early in the software development life cycle. This

model is to check whether the software exhibits proper behavior when improper usage or improper input is

given to the system, and this logic is carried out in every phase of the software development life cycle.

Keywords : Test Case Generation, Test suite minimization, concept analysis, lattice, Genetic Algorithm,

Empirical analysis, Coverage analysis

I. INTRODUCTION

Conventional performance based testing the run time

performance of the software but chances are that

during the process of software development

conformed to performance, and the software can

develop some vulnerable areas. This vulnerability

can happen at any level right from [1] requirement

analysis to implementation phase. One of the hectic

tasks is to find all possible vulnerabilities that can

occur at any time during the development of the

software. One way to identify those are by running a

[2] vulnerability specific predicates and the other is

done by trying out all possible improper inputs at

every possible entry points to the system. The

conventional or traditional software testing checks to

see if the software is stable based on the specification

devised during the analysis phase. Developers tend to

make mistakes when [3] writing the software, math

errors, incomplete logic or incorrect use of functions.

Such mistakes can occur even earlier in the

development process when such mistakes have a

http://ijsrcseit.com/

Volume 3, Issue 5, May-June-2018 | http:// ijsrcseit.com

Dr. Selvakumar. S et al. Int J S Res CSE & IT. 2018 May-June; 3(5) : 941-948

942

security implication, then that part of the software is

termed vulnerable. Vulnerabilities are caused due to

increase in malicious software aspects which arises

when the system produces inconsistent responses.

The conventional based testing is to uncover

performance problems which occur due to the

presence of faulty inputs and it helps to look through

a way to enhance the performance. Most of such

models miss out a way to identify the parts which

caused the performance problem instead they focus

on the way to increase the performance by other

methods like [4] patching up after the development

of the whole software which is unreliable and

disruptive. During implementation, some of the

functionality might be missed out, so the developers

tend to include those after the completion of the

software which may create some vulnerable areas,

but it helps to [5] improve the quality of the software.

The advantage of doing so is by inclusion of pre-built

components like libraries, which usually does not

create any logical change to software but it poses a

high risk of leading to new vulnerabilities which

pose different level of risk which can be identified

with the help of a [6] vulnerability scoring system or

by [7] measuring vulnerabilities and their properties.

 Generally, such systems are conceptual

because when it is developed its outcome is seen only

at the closure of the software development process,

and the developers assume some conditions by on

some functionalities of the software. These

conditions may behave in a normal way when it

occurs as assumed earlier, only when the input to the

functionally complete software satisfies the assumed

condition. When this condition is not matched for

input, then the software may behave unpredictably.

These are mainly due to the model assumed with

certain characteristics even before implementing the

software component. In some cases, some known

abnormal inputs are handled by the use of exceptions

which are used when a set of predefined condition

fails, but mostly there occurs a new set of abnormal

inputs which is not yet defined. Such abnormalities

which can occur are hard to track down, so there is a

need to make use of a tool to identify the

vulnerabilities. Though the identification of all

potential vulnerability is hardly possible or in other

words is just theoretical, but certain vulnerable areas

can be predicted by the way the development process

is carried out.

II. Related Work

Software security has been a concern of serious study

for at least 40 years, and an important stream of

innovations that have improved the ability to protect

networks and software applications. But attackers

have adapted and changed various methods as the

year passes [19]. Where do we the software Industry

stand at this stage in the battle between attackers and

defenders? Are attackers gaining hold, as it often

seems when reading press accounts of the recent data

exposure? The analysis [19] seeks to answer these

questions using data from the US National

Vulnerability Database (NVD) and to identify classes

of vulnerabilities where improvements will be the

most cost-effective.

 The approach can be implemented by the use

of different models for tracking vulnerabilities. One

such model is to include [8], [9] vulnerability

assessment tool to identify vulnerable areas by [10]

penetrating known set of inputs that may lead to

vulnerability. The other is to make different

components of the model to check the relevancy

between improper inputs and its corresponding

known exceptions for a given input. [15] elucidates

the overview and different techniques used in

vulnerability assessment and testing for penetration.

[16] focuses on the vulnerabilities that occur in any

Web application and methods for the removal of

these vulnerabilities. A vulnerability assessment is a

process of identifying, quantifying, and prioritizing

(or ranking) the vulnerabilities in a system [16]. In

this work the vulnerability assessment was

conducted to find the weaknesses inherent in the

Information systems that may be exploited, leading

Volume%203,%20Issue%203%20|%20March-April-2018%20
http://www.ijsrcseit.com/

Volume 3, Issue 5, May-June-2018 | http:// ijsrcseit.com

Dr. Selvakumar. S et al. Int J S Res CSE & IT. 2018 May-June; 3(5) : 941-948

943

to software system breach. The [16] discusses

different types of SQL injection methods. [17]

analyses current penetration testing tools and the

tests them on a use case web application, build

specifically with present security flaws.

 The process of penetration testing is

described in detail, and the performance of each tool

is evaluated. [17] also summarizes the recommended

practices to mitigate found flaws. [18] proposes a

generic approach for designing vulnerability testing

tools for web services, which includes the definition

of the testing process and the tool components. Based

on the proposed approach, [18] presents the design of

three innovative testing tools that implement three

complementary techniques (attack signatures,

improved penetration testing, interface monitoring,

and runtime anomaly detection) for detecting

injection vulnerabilities, thus offering extensive

support for different scenarios. A case study is

designed to demonstrate the tools for the particular

case of SQL Injection vulnerabilities [18]. The

experimental evaluation of the work presents that

the tools can be used in different scenarios with

improved effectiveness and that the proposed tool

outperform many other commercial tools by

achieving improved in detection coverage and the

decrease in false-positive rates.

III. Vulnerability testing in SDLC

This section discusses the computer security model

[14] describes the integration of vulnerability testing

in the conventional model of testing a system.

Increased functionality leads to decreasing the

performance of the system. To overcome the above

situation, the system is monitored in a controlled

environment in which the absence of real-world

scenario does not make an effective identification of

the vulnerabilities. So the testing of vulnerabilities in

[11], [12] hostile environment does not identify all

the defects that can occur in a real-time system.

Testing of the system in which the actual errors or

failures that occur at each stage cannot be directly

simulated or predicted, which eventually leads to

very minimal testing in the vulnerable area or it is

completely ignored. When such a case happens in a

real-time system, the chances are that it can lead to

data corruption and affect the system stability which

is some of the important parameters in defining the

performance of the system. Traditionally testing

helps in crosschecking specifications of a software

system which is mostly verification process. To

differentiate from the conventional type of testing

we do the vulnerability assessment to [13] identify

the unknown vulnerabilities from the exploits by

malicious programs at each phase of the Software

Development Life Cycle (SDLC).

Figure 1 : Vulnerability testing in SDLC

The above computer security model [14] describes

the integration of vulnerability testing in the

conventional model of testing a system. Each of the

documented and collected samples or information

during the analysis phase is scanned for resources

that may trigger some vulnerability, and its

corresponding risk is assessed. Since vulnerability

testing is planned to be induced in each phase of the

software development life cycle, the principles

followed for the specification of the system are

explored for vulnerable occurring cases, and those set

of specifications are redefined.

IV. Instructive Example

In this section, we focus on a typical scenario which

can explain the concept of the unknown behavior of

the system when abnormal inputs are given.

Volume%203,%20Issue%203%20|%20March-April-2018%20
http://www.ijsrcseit.com/

Volume 3, Issue 5, May-June-2018 | http:// ijsrcseit.com

Dr. Selvakumar. S et al. Int J S Res CSE & IT. 2018 May-June; 3(5) : 941-948

944

Consider a reservation system in which all passenger

information which is stored in a document format is

given as input to the system. The processing of text

includes the details of each of the passengers.

Figure 2 : A simple illustration of an example

The processing, when done without the aid of a

standard translator, may lead to some vulnerability.

The above system process the input documents in say,

the English fonts and one user details is in some

unknown font, which needs to be stored in the

directories of the reservation system. This is not

entirely possible because of the security mechanism

all the reservation system employs. Thus the system

tries to process the data and generates a sequence of

abnormal behaviors since the system assumes it to be

a normal input.

V. Problem Analysis

5.1 Performance analysis

A performance test on the software tends to find out

the performance related problem of the software

under the normal environment. The performance-

related problems may directly affect the performance

of the system in many ways such as lack of

appropriate resource, inadequate system capabilities,

weak operating system and poorly designed software

functionality. We are going to consider only the

performance degrade that occurs due to the existence

of vulnerable areas and employ suitable safeguard

measures to make the software behave consistently.

The performance of the system can be explained

with the help of some attributes like the number of

operations or transactions made, the amount of data

it can handle at a time and so on.

 Normally in this approach, two different

components help to reduce the performance of the

software which is load testing and stress testing. The

load testing is used to check the performance when

the input is given in a variety of combinations, and

stress testing determines the amount of input

sequence that it can handle at a time. The

performance change in normal software can be

incorporated by the following graph, in which we

assume three factors may play a vital role in

determining the stability of the system, but other

such factors that may degrade the performance

aspects of the software which are at the moment

unexplored.

Figure 3 : Performance measure based on normal and

abnormal inputs

The performance is devised based on the type of

input given to a system and how it behaves for each

of those inputs. So the performance of the software

under a normal environment with normal input

sequence will increase steadily consistently, but

when the set of abnormal inputs is introduced, then

the performance varies based on the different effects

caused by the abnormal inputs in the software which

can be system crash, component failure or gradual

performance decrease. The point at which the

software starts to process the abnormal inputs are

assumed to be ø point. The behavior of the software

typically depends on the intensity of the abnormal

input processed by the software. When some

components of the software fail, then it will affect

the performance in long time execution of the

Volume%203,%20Issue%203%20|%20March-April-2018%20
http://www.ijsrcseit.com/

Volume 3, Issue 5, May-June-2018 | http:// ijsrcseit.com

Dr. Selvakumar. S et al. Int J S Res CSE & IT. 2018 May-June; 3(5) : 941-948

945

software while in case of recurring failure of

functions then the software performance goes down

gradually and only when the system cannot handle

all those abnormal inputs the software crashes

abruptly. As the future work other performance-

related factors such as response time for the initiated

activities, processing time, memory constraint,

security constraint, temporary and permanent

resources failure will be considered to determine the

software performance.

5.2 Collecting Known sequences

Software vulnerabilities can occur for many reasons,

but this paper focuses on those generated by

abnormal inputs. To identify those inputs we need to

have a procedural approach, which can be done by

exploring the problem at hand.

Figure 4: Block diagram showing the behavior of the

system

When the abnormal inputs are induced, the system

also behaves abnormally in a different way which

may lead to vulnerabilities. This case can be

minimized by following the VulnerMini algorithm.

1. Choose ai from ni that forces the system to

generate error reports

2. Design ai based on the faults

3. Repeat for various series of inputs (both ai

and ni)

4. Force Oe to be generated

5. Interrelate ai, ni and Oe.

6. Identify the frequency of errors in each

component

7. Reframe the error occurring part in an

efficient way.

Notation

ai Abnormal inputs

ni Normal inputs

Oe Invalid output or output error

As the algorithm explains the way to reduce the

failures in the component of a system the same can

be illustrated with the use of the block diagram in

which the abnormal inputs are processed in the

system with the help of an abnormal input monitor

that decides on the processing of such inputs.

Figure 5 : Block diagram to overcome the limitations

in a system

5.3 Vulnerability analysis

Vulnerability factors are included while identifying

the performance measures such conditions are aimed

to measure the frequency of occurrence of that

results for the given input. A system can handle a

large number of simultaneous inputs which are

previously defined, but in some case, this may be

violated by unknown factors, which are frequently

Normal inputs and

abnormal inputs

 Software

Expected output and

abnormal behavior

Normal inputs and

abnormal inputs

 Software + vulnerability

testing

Expected output and

abnormal behavior

Volume%203,%20Issue%203%20|%20March-April-2018%20
http://www.ijsrcseit.com/

Volume 3, Issue 5, May-June-2018 | http:// ijsrcseit.com

Dr. Selvakumar. S et al. Int J S Res CSE & IT. 2018 May-June; 3(5) : 941-948

946

monitored that are affecting the performance of the

system. The vulnerability testing is induced in the

above case with which the duration for processing

the part responsible for performance dip are

identified and induced to vulnerability testing.

Figure 6 : Performance measure for all cases and the

decline is checked by a restoration point

When the ø point occurs, the part of the system that

is responsible for the failure is identified, and a

restoration point is set so that the system is tried to

the reinstate the system to normalcy. The restoration

point depends upon the complexity of the problem

that is induced due to the set of abnormal inputs.

Further, the vulnerability of the software can be

represented by the following terms.

Notation

Ø The point the performance decreases

Si System impact that influences performance

degrade

Pi Duration for the system to restore

Cf0 Gradual decrease in performance

Cf1 Crashing down of the system

Df0 Data not secure

Df1 Data is secure

 The Pi factor is known as the probation

period during which the faulty components of the

system are identified, while the factors Cf0 and Cf1 are

Boolean variables that determine the crash factor. Df0

and Df1 are data factors with the Boolean logic that

determines whether the data is still safe or not.

6. Conclusion and Future Work

 The main

contributions of this paper are the concept of

including vulnerability testing in the conventional

methods to enhance the performance of the system.

This approach is focused mainly on the

implementation part which is where some

vulnerability factors can be identified easily, and

these are predefined for the next phase of processing.

This idea of this paper has proposed a software

testing process in the name of vulnerability testing

that deviates from conventional software testing.

When software models are completed in an

organization, the input data may not be available

immediately which needs collecting the data for all

input logic. So we put forward simple procedure to

identify the defects in the software based on the past

summary of defects in the organization. From the

procedural point of view, the explicit contribution of

this idea is making the vulnerability testing with the

behavioral patterns of the system. Also, this process

can carry out different testing strategies according to

the behavior of the system. It can generate new test

cases by supervising the input actions, and it

generates probable outputs from the implementation

of the various components of a system. As a part of

future work, we intend to identify some known

techniques to identify vulnerabilities in an easier

way, through which some wide variations of

abnormal sequences can be found.

VI. REFERENCES

1. Premkumar T. Devanbu, Stuart Stubblebine,

Software engineering for security: a roadmap,

International Conference on The Future of

Software Engineering, ICSE '00, Limerick,

Ireland - June 04 - 11, Pages 227-239, 2000

2. Ashlesha Joshi, Samuel T. King, George W.

Dunlap, and Peter M. Chen, "Detecting past

and present intrusions through vulnerability-

specific predicates", Twentieth ACM

symposium on Operating systems principles

(SOSP '05). ACM, New York, NY, USA, 91-

Volume%203,%20Issue%203%20|%20March-April-2018%20
http://www.ijsrcseit.com/

Volume 3, Issue 5, May-June-2018 | http:// ijsrcseit.com

Dr. Selvakumar. S et al. Int J S Res CSE & IT. 2018 May-June; 3(5) : 941-948

947

104, 2005. DOI:

https://doi.org/10.1145/1095810.1095820

3. Filippo Ricca, Paolo Tonella, "Detecting

Anomaly and Failure in Web Applications"

IEEE Multimedia, pg. no:44, April-June 2006

4. Helen J. Wang, Chuanxiong Guo, Daniel R.

Simon, and Alf Zugenmaier. "Shield:

vulnerability-driven network filters for

preventing known vulnerability exploits",

International Conference on Applications,

technologies, architectures, and protocols for

computer communications (SIGCOMM '04).

ACM, New York, NY, USA, 193-204, 2004,

DOI: https://doi.org/10.1145/1015467.1015489

5. Ashish Arora, Rahul Telang, "Economics of

Software Vulnerability Disclosure", IEEE

SECURITY & PRIVACY

JANUARY/FEBRUARY 2005.

6. Peter Mell, Sasha Romanosky, Karen Scarfone

"Common Vulnerability Scoring System", IEEE

SECURITY & PRIVACY

NOVEMBER/DECEMBER 2006.

7. Yehuda Vardi and Cun-Hui Zhang, "Measures

of Network Vulnerability", IEEE SIGNAL

PROCESSING LETTERS, VOL. 14, NO. 5, May

2007 Pg.no 313

8. Elspeth Wales, "Vulnerability assessment

tools", Network Security, Vol 2003, Issue 7,

Pages 15-17, July 2003,

https://doi.org/10.1016/S1353-4858(03)00712-8

9. Andrew Blyth, "An XML-based architecture to

perform data integration and data unification

in vulnerability assessments", Information

Security Technical Report 8 (4), 14-25, 2003

10. Sankalp Singh, James Lyons, and David M.

Nicol. Fast model-based penetration testing.

36th International conference on Winter

simulation (WSC '04). Winter Simulation

Conference 309-317, 2004.

11. W. Du and A. P. Mathur, "Testing for software

vulnerability using environment perturbation,"

in Proceedings of the International Conference

on Dependable Systems and Networks (DSN

2000), Workshop On Dependability Versus

Malicious Faults, New York City, NY, June

2000, pp. 603-612

12. Herbert H. Thompson, James A. Whittaker,

and Florence E. Mottay, "Software security

vulnerability testing in hostile environments",

ACM Symposium on Applied Computing (SAC

'02). ACM, New York, NY, USA, 260-264,

2002.

DOI=http://dx.doi.org/10.1145/508791.508844

13. Jedidiah R. Crandall, Zhendong Su, S. Felix

Wu, "On Deriving Unknown Vulnerabilities

from Zero-Day Polymorphic and Metamorphic

Worm Exploits" in CCS-05, November 7-11,

2005, Alexandria, Virginia, USA. Pg. no 235

14. George Whitson. 2003. Computer security:

theory, process and management. J. Comput.

Sci. Coll. 18, 6 (June 2003), 57-66.

15. P. S. Shinde and S. B. Ardhapurkar, "Cyber

security analysis using vulnerability assessment

and penetration testing," 2016 World

Conference on Futuristic Trends in Research

and Innovation for Social Welfare, Coimbatore,

2016, pp. 1-5. DOI:

10.1109/STARTUP.2016.7583912

16. I. Altaf, F. U. Rashid, J. A. Dar and M. Rafiq,

"Vulnerability assessment and patching

management," 2015 International Conference

on Soft Computing Techniques and

Implementations (ICSCTI), Faridabad, 2015,

pp. 16-21.

17. F. Holik and S. Neradova, "Vulnerabilities of

modern web applications," 2017 40th

International Convention on Information and

Communication Technology, Electronics and

Microelectronics (MIPRO), Opatija, 2017, pp.

1256-1261.

18. Nuno Antunes, Marco Vieira, "Designing

vulnerability testing tools for web services:

approach, components, and tools",

International Journal of Information Security

archive, Vol. 16, Issue 4, Pp 435-457, August

2017.

19. Richard Kuhn, Mohammad Raunak, Raghu

Kacker, An Analysis of Vulnerability Trends,

2008-2016, IEEE International Conference on

Software Quality Reliability and Security

(QRS-C 2017), Prague, Czech Republic, July

25-29, pp. 587-588, 2017

20. Roger S. Pressman, "Software Engineering: A

Practitioner's Approach" (7th ed.). McGraw-

Hill Higher Education, 2010.

21. Tao Xie, "Improving Effectiveness of

Automated Software Testing in the Absence of

Specifications" , 22nd IEEE International

Conference on Software Maintenance

(ICSM'06), 2006

Volume%203,%20Issue%203%20|%20March-April-2018%20
http://www.ijsrcseit.com/

Volume 3, Issue 5, May-June-2018 | http:// ijsrcseit.com

Dr. Selvakumar. S et al. Int J S Res CSE & IT. 2018 May-June; 3(5) : 941-948

948

22. J. Derrick and E. Boiten, "Testing refinements

of state-based formal specifications," Software

Testing, Verification and Reliability, no. 9, pp.

27-50, July 1999.

23. M. Utting, A. Pretschner, and B. Legeard, "A

taxonomy of model-based testing," Department

of Computer Science, The University of

Waikato, New Zealand, Tech., Rep. 04/2006,

April 2006.

24. C. Ramakrishnan and R. Sekar, "Model-based

vulnerability analysis of computer systems,"

International Workshop on Verification,

Model Checking, and Abstract Interpretation

(VMCAI-98), Pisa, September, 1998.

25. G. Wimmel, H. Loetzbeyer, A. Pretschner, and

O. Slotosch, "Specification based test sequence

generation with propositional logic", Special

Issue on Specification Based Testing, Software

Testing, Verification and Reliability, vol. 10,

no. 4, pp. 229-248, 2000.

26. T.Downs, P. Garrone, "Some New Models of

Software Testing with Performance

Comparisons", IEEE Transactions on

Reliability, VOL. 40, NO. 3, 1991

27. Sigrid Eldh, Hans Hansson, Sasikumar

Punnekkat, Anders Pettersson, Daniel

Sundmark, "A Framework for Comparing

Efficiency, Effectiveness and Applicability of

Software Testing Techniques", Proceedings of

the Testing: Academic & Industrial Conference

- Practice And Research Techniques (TAIC

PART'06), 2006.

28. Yao-Wen Huang, Shih-Kun Huang, Tsung-Po

Lin, and Chung-Hung Tsai, "Web application

security assessment by fault injection and

behavior monitoring", Proceedings of the 12th

international conference on World Wide Web

(WWW '03). ACM, New York, NY, USA, 148-

159.,

DOI=http://dx.doi.org/10.1145/775152.775174,

. 2003.

Volume%203,%20Issue%203%20|%20March-April-2018%20
http://www.ijsrcseit.com/

