
CSEIT1835252 | Received : 10 June 2018 | Accepted : 25 June 2018 | May-June-2018 [(3)5 : 1049-1056]

International Journal of Scientific Research in Computer Science, Engineering and Information Technology

© 2018 IJSRCSEIT | Volume 3 | Issue 5 | ISSN : 2456-3307

1049

A Case Study on Enterprise Application Integration (EAI)

Using Enterprise Service Bus (ESB)
Dr. Manish L. Jivtode

Department of Computer Science, Janata Mahavidyalaya, Chandrapur, Maharashtra, India

ABSTRACT

The Enterprise Service Bus (ESB) promises to build up a Service-Oriented Architecture (SOA) by iteratively

integrating different kinds of isolated applications into a decentralized infrastructure. It combines best features

of EAI, like MOM, (Web) services, routing and XML processing facilities. ESB refers to architecture, a product

or a way of doing things. This research paper distinguishes the ESB from earlier EAI solutions. It then discusses

the key ESB components and their functions and their role in ESB architecture.

Keywords: Application Integration, Enterprise Service Bus (ESB), Cloud Integration, Azure Integration,

Enterprise Application Integration (EAI), Distributed application integration, SOA Integration.

I. INTRODUCTION

Due to the globalization, enterprises across the world

have to face immense competition. In order to stay in

business, they constantly have to automate business

processes, integrate with business partners and

provide new services for the customers. The goal of

IT is to actively support enterprises in this scenario. It

has to make information available across the

enterprise in order to allow software developers to

integrate business processes in a unified way. Due to

this need, cloud computing has evolved over the past

years which employs Enterprise Service Bus (ESB).

Secondly, cloud computing saves on IT spending,

reduces new systems implementation time, efforts

and risks, eliminates regular system maintenance, and

provides pervasive IT services[1][2].

Most enterprises try to achieve business integration

using Service Oriented Architecture (SOA) [3]. SOA

addresses business integration using coarse grained,

loosely coupled business services. These business

services easily allow creating and automating

business processes by reusing the provided business

functionality [4].

The Enterprise Service Bus (ESB) addresses the

integration problems faced by diverse applications. It

iteratively integrates isolated applications into a

decentralized infrastructure [5]. In Gartner terms,

ESB is the most promising approach for enterprise

application integration (EAI) [6].

ESB is often used to name different things like

architecture, a product or a “way of doing things”.

This research paper discusses what ESB exactly is. It

discusses its key components, their functionality and

their features. Finally it concludes with an answer to

the question “What is an ESB?”

Figure 1. ESB Based Integration Architecture

http://ijsrcseit.com/

Volume 3, Issue 5, May-June-2018 | http:// ijsrcseit.com

 Dr. Manish L Jivtode et al. Int J S Res CSE & IT. 2018 May-June; 3(5) : 1049-1056

 1050

II. ESB: APPROACH TO EAI

Enterprise Application Integration (EAI) utilizes ESB

to build SOA applications. This approach to EAI

through ESB is very innovative and challenging. This

research paper focuses on need for integration, need

for ESB and problems addressed by ESB.

III. NEED FOR INTEGRATION

Current heterogeneous IT landscape in most

enterprises consists of variety of different applications.

Different IT projects conducted to develop new

applications, to refractor existing applications,

customize and introduce standard applications. Each

of these applications has been bought for a particular

purpose, supports people in a specific domain and

owned by certain department in the enterprise. The

heads of these departments try to protect their

resources (machines and applications) and the

information gathered and maintained by their people.

They only share their resources if it is either

beneficial to them or if the enterprises management

forces them to do so. This results in IT landscape

across the enterprise in many isolated applications.

Due to globalization, enterprises have to face

immense competition. To stay in business, they have

to reduce their costs through reduced IT spending,

new systems’ implementation time, efforts and risks,

eliminates regular system maintenance and provides

pervasive IT services, process optimization and gain

new market shares through process and product

innovations. In order to achieve this, applications

from different domains and departments have to be

integrated. To integrate their applications they have

to setup one or more integration projects. Each

project has the goal to integrate affected applications.

Two common approaches for application integration

are point-to-point integration and centralized EAI

broker integration. Point-to-point integration

directly connects two applications. EAI broker

integration connects two or more application via a

centralized mediator. This mediator is capable of

routing and transforming messages sent between the

applications.

IV. NEED FOR ESB

Point-to-point integration leads to unreliable,

insecure, non-monitor able and non-manageable

communication channels between applications.

However, these are tightly coupled applications

meaning integration application has to know the

target application, interface methods to call, the

required protocol to talk and the required data format

to send. The problem is that the process and data

transformation logic are encoded into the application.

Thus, a new integration project has to be launched to

refractor the depending applications each time when

a change occurs in an application.

EAI integration uses a centralized EAI broker to

integrate all applications. However, this results in so

called islands of integration. This approach solves

most of the point-to-point integration problems.

However, managing resource in this approach is

somewhat difficult.

V. ESB PROMISE

ESB promises to construct an SOA by iteratively

integrate different kinds of isolated applications into

a decentralized infrastructure called service bus. ESB

is based on EAI platform in terms of special message

routing and transformation. Decentralized

infrastructure does not force enterprise departments

to integrate their applications into a centralized EAI

broker. Instead, it allows departments with limited

access to their business functionality and information.

ESB infrastructure is not only decentralized but also

highly distributed and versatile thus allowing

bringing all kinds of applications step-by-step to the

service bus.

Volume%203,%20Issue%203%20|%20March-April-2018%20
http://www.ijsrcseit.com/

Volume 3, Issue 5, May-June-2018 | http:// ijsrcseit.com

 Dr. Manish L Jivtode et al. Int J S Res CSE & IT. 2018 May-June; 3(5) : 1049-1056

 1051

ESB compared with EAI replaces all direct

application connections through reliable, secure and

manageable virtual channels. With virtual channels

applications are decoupled leading to loosely coupled

interactions and interfaces. It allows standardized

message exchange between different business services

using XML as data format and SOAP, HTTP/REST as

message exchange protocol.

In a heterogeneous computing environment like

today’s, integrating disparate systems is risky and a

great challenge. However, it is important to business

success particularly for automating and streamlining

business process management (BPM). Earlier API

(Application Programming Interface) integration was

a major success for integrating two different systems

or services. However, API methods are tightly-

coupled and only works for one-to-one connection.

API is primarily used for data exchange between

systems and lacks security management. Moreover,

the industry lacks standards for API due to systems

being greatly different and proprietary.

In the late 1990’s, the IT industry designed and

developed a Service-Oriented Architecture (SOA)

aimed at creating a distributed computing

architecture in which all software services could be

integrated. In SOA, software services are distributed

on networks and they are integrated with each other

via a central service registry which is called broker.

When a software service needs another service, it

queries the registry with certain criteria. If the

registry finds the service that matches the criteria, it

sends a service contract with an endpoint address

back to the requester. The requester then remotely

invokes the requested services with the granted

contract and address. When a new service is plugged

into the SOA network, it registers itself in the central

service registry for future requests. A SOA service is

self-contained to implement certain predefined

business logics; that is, the service interfaces. The

term Enterprise Service Bus (ESB) is widely used in

the context of implementing an infrastructure for

enabling a service-oriented architecture (SOA).

However, real-world experience with the

deployment of SOAs has shown that an ESB is only

one of many building blocks that make up a

comprehensive Service-Oriented Infrastructure (SOI).

The term ESB has morphed in a number of different

directions, and its definition depends on the

interpretation of individual ESB and integration

platform vendors and on the requirements of

particular SOA initiatives.

Figure 2. ESB Architecture

Based on the experience Service Oriented Integration

(SOI) implementations, one can think of an

Enterprise Service Bus as a collection of architectural

patterns based on traditional enterprise application

integration (EAI), message-oriented middleware,

Web services, .NET and Java interoperability, host

system integration, and interoperability with service

registries and asset repositories.

The key components of ESB architecture are MOM,

service container and management facility. A service

container contains adapter module, mediation

module, message routing module, security module,

and management module.

ESB greatly improves the central service registry

mechanism in SOA and provides a software

infrastructure for SOA implementation in enterprise

applications as well as system integration across

Volume%203,%20Issue%203%20|%20March-April-2018%20
http://www.ijsrcseit.com/

Volume 3, Issue 5, May-June-2018 | http:// ijsrcseit.com

 Dr. Manish L Jivtode et al. Int J S Res CSE & IT. 2018 May-June; 3(5) : 1049-1056

 1052

organizational boundary. Thus, ESB greatly enhances

the usage of SOA with a virtual bus to connect many

disparate systems and services together.

ESB is message-based bus architecture which consists

of a set of software components called service

containers. Service containers are interconnected

over a reliable and secure messaging channel. A

service container connects one or many software

services or systems through service adapter(s).

A system or service sends request messages directly to

its connected service container which in turn

processes and routes the messages to a destination

(requested) service container. The destination service

container processes and forwards the messages to its

connected destination (requested) service or system

through a service adapter. During this process, ESB

service containers process, monitor, logs and manage

messages to make sure all services and systems are

connected reliably and securely.

VI. MESSAGE ORIENTED MIDDLEWARE

MOM is Message Oriented Middleware which is

highly distributed network of message servers and

backbone of ESB. It establishes a reliable, secure, and

manageable virtual channel and sends messages over

them.

In MOM (Message Oriented Middleware), all direct

communication channels between applications are

replaced by virtual communication channel. So, all

synchronous remote calls are replaced by

asynchronous message exchange. All tightly coupled

point-to-point interactions are replaced by loosely

coupled indirect interactions. MOM actually consists

of network of message servers and number of

message clients. The message server manages various

queues, topics and relays and stores messages sent.

ESB contains multiple message servers connected to

each other. MOM routes the messages reliably

through network of message servers. Each message

server on the route stores the message, tries to send it

to the next message server and deletes it only if the

target server has acknowledged the reception. Thus,

MOM guarantees the message delivery.

Figure 3. Message flow in MOM

A. Queues

It allows one-directional communication. Each

queue acts as an intermediary (sometimes called

a broker) that stores sent messages until they are

received. Each message is received by a single

recipient.

B. Topics

It provides one-directional communication

using subscriptions-a single topic can have

multiple subscriptions. Like a queue, a topic acts

as a broker, but each subscription can optionally

use a filter to receive only messages that match

specific criteria.

C. Relays

It provides bi-directional communication. Unlike

queues and topics, a relay doesn't store in-flight

messages; it's not a broker. Instead, it just passes

them on to the destination application.

A service container manages an application internally

or provides access to an external application via an

appropriate adapter. Adapter manages access to all

kinds of applications. It allows upload, download files,

Volume%203,%20Issue%203%20|%20March-April-2018%20
http://www.ijsrcseit.com/

Volume 3, Issue 5, May-June-2018 | http:// ijsrcseit.com

 Dr. Manish L Jivtode et al. Int J S Res CSE & IT. 2018 May-June; 3(5) : 1049-1056

 1053

to send and receive emails or to invoke a remote

method via RMI. The service container makes the

business functionality implemented by the managed

application available as business services. These

intelligent service containers and highly distributed

MOM give the ESB its decentralized nature. In ESB,

many special services are available which includes

routing and XML processing services.

The adapter module acts as a service connector to

connect various software services and systems such as

ERP or CRM. A service adapter, very similar to a

hardware or software driver (e.g. printer driver,

database driver), uses the native transaction

interfaces in the proprietary service to transfer

messages between the service container and the

service. ESB solution providers provide a range of

service adapters for various systems and services.

The mediation module transforms protocol, message

format, and message content between the requesting

service and the service provider. Mediation is

critically important for the system integration

because services on the ESB use different protocols

and data formats. The mediation module is

implemented using the XML-based transformer

components which are configured through XSL

(Extensible Style sheet Language). More complex

transformers are required to invoke other SOA

services or query database.

Figure 4. Detailed Service Containers

The message processing module processes incoming

and outgoing messages and implements event

handling. This module sorts, prioritizes, delays, and

reschedules message delivery as needed to guarantee

both synchronous and asynchronous communications.

It monitors and logs messages for quality of services

(QoS) and security management. Using the message-

encoded logic and content-based logic, the module

conducts message validation, transformation and

aggregation, and message buffering and delaying. In

addition, the module supports various event

handlings such as event triggering, noticing, filtering,

and mapping. Artificial intelligence technologies can

be built in this model to improve message processing

and event handling. For example, in the ESB of an

investment bank, a proactive event handler

automatically checks a stock market and updates the

data correspondingly so that the future event

handling always uses the latest market information.

The message routing module routes messages from a

service requester to the service providers using the

XML-enabled content-based routing method. The

content-based method provides a highly configurable,

dynamic and intelligent routing. For example, when

the message content indicates a customer doesn’t

want to book a flight ticket, the request will not be

routed to the service provider that books a flight

ticket. The routing module is implemented with

popular web service techniques such as Simple Object

Access Protocol (SOAP) and XML Path Language

(XPath). The routing module provides a reliable and

secure message exchange channel between the

service requester and the service provider.

The security module enforces compatibility between

all modules and security policies. Particularly, the

security module implements security standards and

policies including authentication, authorization,

encryption, auditing, and intrusion detection. The

security module is also responsible for unifying

security management throughout the service

Volume%203,%20Issue%203%20|%20March-April-2018%20
http://www.ijsrcseit.com/

Volume 3, Issue 5, May-June-2018 | http:// ijsrcseit.com

 Dr. Manish L Jivtode et al. Int J S Res CSE & IT. 2018 May-June; 3(5) : 1049-1056

 1054

container during message receiving, processing, and

sending.

The management module plays a critical role in ESB.

This module tracks activities happening in a service

container and handles a variety of exceptions. It also

manages workload, schedules tasks, creates threads,

registers services, manages service transaction and its

lifecycle, and manages service state and quality of

service (QoS). ESB is a virtual service bus architecture

that connects many distributed and decentralized

service containers.

Additionally, service registration and invocation are

highly dynamic. This requires ESB to be highly

configurable and customized to meet different service

demands. The management module therefore

provides administration tools that configure, manage

and control service container. A centralized

management tool can be built to manage and

configure all service containers in the ESB.

With administration tools, users can configure ESB

containers without requiring shutdown or

interrupting the integrated services. ESB adopts SOA

and highly enhances the SOA implementation and

functionalities by replacing the central registry with

the bus architecture. It makes the system and service

integration a truly plug-and-play process.

ESB is message-based distributed integration software

platform in SOA. It is open-standard, platform-

independent and vendor-neutral. It can run on any

operating system and hardware structure, and can be

implemented with different technologies (e.g. J2EE,

Microsoft .NET). With many service containers

distributed and decentralized on the Internet, ESB

creates a virtual service bus for system and service

integration.

VII. ROUTING FACILITIES IN ESB

Itinerary-Based Routing: Itinerary based routing is

often used to manage short-living, transient process

fragments called as micro flows. A micro flow

consists of a sequence of logical steps. Each logical

step refers to a business service. Thus, to enact a

micro flow, a message is sent through the service bus

in such a way that all business services are invoked.

Therefore, the service bus can be thought as a highly

distributed routing network that is build up by a

variety of message servers and service containers.

In order to route a message through the bus, each

message contains an itinerary. The itinerary consists

of a list of ESB endpoints that needs to be visited and

the information about already visited ESB endpoints.

The message also contains the current processing

state as message payload. Because the itinerary and

the process state is carried by the message as it travels

across the bus, each service container is able to

evaluate the itinerary and to decide in which virtual

channel the message has to be placed, to send it to

the next ESB endpoint in the list.

VIII. SERVICE ORCHESTRATION USING BPEL

Service orchestration using BPEL is used to manage

long-running business processes that might run for

months or years. A BPEL process definition consists

of a number of logical steps that are connected to

each other by conditional or unconditional links and

can be executed in sequence or in parallel. A BPEL

process definition also allows defining time-based,

condition-based and event-based triggers. As in the

itinerary based routing, each logical step refers to an

ESB endpoint.

A service orchestration or BPEL engine is used to

enact BPEL processes based on the process definitions.

The BPEL engine is provided by the ESB as a special

Volume%203,%20Issue%203%20|%20March-April-2018%20
http://www.ijsrcseit.com/

Volume 3, Issue 5, May-June-2018 | http:// ijsrcseit.com

 Dr. Manish L Jivtode et al. Int J S Res CSE & IT. 2018 May-June; 3(5) : 1049-1056

 1055

service via an ESB endpoint can therefore be accessed

like any other service. Depending on the setup, an

ESB might contain multiple BPEL engines in

different geographic locations that manage different

BPEL processes.

IX. CONTENT-BASED ROUTING

Content-based routing (CBR) is based on the fact that

XML processing services with different capabilities

are plugged into the bus. They allow validating,

enriching, transforming, and route and operate XML

messages. Combinations of these services allow

forming lightweight processes with the sole purpose

to process messages. Plugging such a lightweight

process as CBR service into the message flow

between a message producer and a message consumer

allows to handle all kinds of complex integration

tasks, for example before and after a service

invocation.

X. CONCLUSION

This research paper discusses the Enterprise Service

Bus (ESB) architecture, Service Oriented

Architecture (SOA), integration need and issues in

great detail. Finally, it concludes with the answers to

need for enterprise integration and the approach to

achieve it.

ESB is an incremental approach of constructing a

SOA by connecting all kinds of applications to

enterprise-wide distributed infrastructure.

ESB is an architectural style in which applications are

service-enabled through service containers and

connected to a MOM based service bus that is not

only capable of routing messages but also of

transforming them.

There are many companies that sell ESB

infrastructure products allowing enterprises to build

up an ESB. These products are often composed out of

existing components, such as MOMs, J2EE servers

and EAI integration adapters, and provided in a

manageable manner.

XI. REFERENCES

[1]. Fowler, M.. Patterns of Enterprise application

Architecture. Addison Wesley, 2002.

[2]. Chappell, D. A.: Enterprise Service Bus.O'Reilly

Media Inc., 2004.

[3]. Hohpe, G., Woolf, B.: Enterprise Integration

Patterns. Pearson Education, 2004.

[4]. Krafzig, D., Banke, K., Slama, D.: Enterprise

SOA: Service-Oriented Architecture Best

Practices. Prentice Hall, 2004.

[5]. Alonso, G., Casati, F., Kuno, H., Machiraju, V:

Web Services: Concepts, Architectures and

Applications. Springer-Verlag, 2004.

[6]. Keen, M. et al.: SOA with an Enterprise Service

Bus in Web Spehere. http://www.redbooks.

ibm.com/redbooks/pdfs /sg246494.pdf, 2005.

[7]. Pulier, E.,Taylor, H.: Understanding Enterprise

SOA,Manning, 2006.

[8]. Tabeling, P., Groene, B., Knoepfel,

A.:Fundamental Modeling Concepts-Effective

Communication of IT Systems. John Wiley

&Sons, Ltd., 2006.

[9]. PolarLake: Understanding the

ESB.http://www.polarlake.com/en/ assets /

whitepapers /esb.pdf.

[10]. Sun Microsystems: Service Oriented Business

Integration. http://java.sun.com/ integration/.

[11]. Business Process Management Initiative:

BPMN: Business Process Modelling Notation

1.0

[12]. FMC Consortium: FMC: Fundamental

Modelling Concepts. http://www.f-m-c.org.

[13]. BEA Systems, IBM, Microsoft, SAP AG and

Siebel Systems: Business Process Execution

Language for Web Services 1.1 (BPEL4WS).

http://www- 128.ibm.com

Volume%203,%20Issue%203%20|%20March-April-2018%20
http://www.ijsrcseit.com/

Volume 3, Issue 5, May-June-2018 | http:// ijsrcseit.com

 Dr. Manish L Jivtode et al. Int J S Res CSE & IT. 2018 May-June; 3(5) : 1049-1056

 1056

/developerworks/Library /specification /ws-

bpel/.

[14]. The Web Services Resource

Framework.http://www-

106.ibm.com/developerworks /library/ws-

resource/ws-wsrfpaper.html

[15]. The SNMP Protocol.http://www.snmp.com

/protocol/

[16]. W3C: SOAP specification http:// www.w3 .org

/TR/soap/.

[17]. W3C: XML Transformations

(XSLT).http://www.w3.org/TR/xslt.

[18]. Mule ESB project page. http://mule

.codehaus.org

Volume%203,%20Issue%203%20|%20March-April-2018%20
http://www.ijsrcseit.com/

