
 CSEIT183535 | Received : 05 May 2018 | Accepted : 14 May 2018 | May-June-2018 [(3)5 : 108-113]

International Journal of Scientific Research in Computer Science, Engineering and Information Technology

© 2018 IJSRCSEIT | Volume 3 | Issue 5 | ISSN : 2456-3307

108

Analysis of REST API Implementation
Chaitanya Mukund Kulkarni, Prof. M. S. Takalikar

Department of Computer Engineering, Pune Institute of Technology, Pune, Maharashtra, India

ABSTRACT

RESTful web services provide an architectural style for developing the web services and way of consuming

those apis for client. The apis, developed using http protocol may not be following all the REST constraints. The

motivation of this paper is to design the method for api validation. Method checks if the implementation is

developed as per the requirements of the specification document of the respective api. This paper also studies

the challenges in analysis of the REST api and validation of the api implementation. This mechanism will

consider OpenApi Specification document of the RESTful web api implementation.

Keywords: Restful Web Services, Web Interfaces, Web Services, OpenApi specification, swagger

documentation

I. INTRODUCTION

The technologies developed for the web based

services starting from the basic RPC mechanisms,

SOAP based webservices and the architectural style

Representational State Transfer (REST) [1]. REST is

the term defined by Roy Fielding. REST based micro

service oriented architecture is gaining more and

more popularity for the realization of web based

service design. RESTful web apis works on HTTP

protocol with the resource having URIs and MIME

types. As REST is developed on already established

and efficient internet web technology it provides

simplicity along with standard inter operable and

availability on all the platforms [1]. REST

architecture provides some constraints which stresses

on the quality attributes on REST full web services.

REST based software systems assure modular,

scalable and extendable web service development [2].

As REST services are based on REST architecture, the

framework helps to realize REST compliant design to

a running web service.

The Fielding's [1] research describes four main

constraints for any web service to be REST compliant.

Resources, their representations, response messages

given by the apis and HATEOAS links provided by

the apis for connectedness are the four principles

defined for the REST architecture. Most of the

constraints are fulfilled using the appropriate,

language specific framework.

To provide a way for analysing the implementation

of REST services, this paper provides method for

analysis with the help of OpenApi Specification

document 2.0. Our main goal will be of providing a

way to compare the implementation and its

documentation and giving the detailed report on the

REST api implementation. The report will also have

the details about gaps between the implementation

and the documentation. We envision that knowing

and analysing these data in detail will allow deriving

fitting approaches for resolving the identified deficits,

helping to improve the state of the art with

purposeful solutions. There will be two parts, one for

comparison between implementation and the

documentations for identifying gap in the

http://ijsrcseit.com/

Volume 3, Issue 5, May-June-2018 | http:// ijsrcseit.com

 Chaitanya Mukund Kulkarni et al. Int J S Res CSE & IT. 2018 May-June; 3(5) : 108-113

307

implementation and second one will be for applying

the REST api validation criteria.

The rest of the paper is organized as: part II will

give the review of the related work done, part

III will give the implementation detail of the

system, part IV will describe the result analysis

information and in finale section the work will be

concluded

 Definitions

A. OpenApi Specification/Swagger: OpenApi

Specification is the standard for the REST api

documentation. The document is developed in

json or yaml format. The specification

document has information about each path.

Every path or the endpoint has the details

about methods it implements. Http methods

gives details of parameters, responses, accept

and return types. The solution proposed by our

system is based on this specification

documentation format. The version used by the

system in OpenApi specification 2.0.

B. Resource: REST architecture is a resource

oriented architecture. Resources are the

entities of the system around which the apis

are implemented. RESTful services return

resources in some representation format. REST

architecture is stateless architecture as client

and server does not store.

C. HTTP protocols: REST web apis are developed

using HTTP protocol. Hence it must make use

of all the HTTP properties such as all the HTTP

verbs, HTTP responses, header information etc.

The work presented here will consider that the

apis are using HTTP protocols and the apis are

validated accordingly.

II. REVIEW OF LITERATURE

Web services have been studied and investigated to

improve the performance in many ways. One of the

way of categorizing the web services on basis of types

of the services such as RPC based services, resource

oriented like REST, service oriented as SOAP

services and hybrid services developed [3].

Paul Adamczyk et. Al [4] focused the study on

principles of the REST architecture defined by

Fielding‟s literature [1]. Using these principles, the

REST standards are defined and comparison between

REST and traditional web services is carried out. The

work analyses the services theoretically as well as

practically. In theoretical study, the focus is on the

principles of the REST architecture which are

responsible for efficient design of the web api. Each

of the principles (or constraints defined by Fielding's

work [1]) is elaborately defined. REST architecture is

resource oriented. Hence, resource is core of the

REST services, which makes resource first principle

of the REST architecture. Each service is related to a

particular resource. A resource is an entity or a group

of entities which are represented in the forms

defined by the servers by considering the client's

needs. Thus, the representation of a resource is the

second principle of REST. Whenever a resource is

requested by client server provides it in a

representation such as application/json. For each

request to server, server sends some message as a

response. The responses given by a server gives the

success and failure details of the api endpoint. These

responses are third principle of the REST

architecture. Forth principle ensures connectedness

among the api endpoints. This constraint stresses

each endpoint to provide hypermedia links to other

resource apis. The work presented by Dominik

Renzel et. Al [6] try to define some standards for the

RESTful web services. The standards are classified in

17 analysis criteria. Among these criteria 12 are

defined as the properties which the apis should

follow while remaining 5 standards are defined as the

Volume%203,%20Issue%203%20|%20March-April-2018%20
http://www.ijsrcseit.com/

Volume 3, Issue 5, May-June-2018 | http:// ijsrcseit.com

 Chaitanya Mukund Kulkarni et al. Int J S Res CSE & IT. 2018 May-June; 3(5) : 108-113

308

properties which are not always required for a web

service to be RESTful. The standards are defined in

such a way that the service must follow all the

characteristics provided by Fielding‟s research [1]

and the book RESTful web services [2]. The analysis

of this paper is carried out over 25 most popular Web

services from www.programmabelweb.com. The

analysis starts from availability of formal description

of the web service along with HATEOAS link

checking, resource analysis, various header

parameter checks, HTTP usage checking, and ends

with the analysis regarding security requirements for

the web api.

There is another approach for analysing the REST

apis which is the structural analysis of the api [13]

[14] [15]. The work by F. Haupt et. Al [13] targets

the api description for checking and analysing the api

implementation. It defines and uses canonical model

which gives benefits of defining resources, apis, links,

root, and number of operations performed on the

resources. The REST apis provided by some cloud

providers are studied by F. Petrillo et. Al [8] with

help of 73 best practices compiled from literature. It

checks whether the apis are following REST

constraints or not.

By studying the work on REST api architecture there

is need for the work in standardization of the web

apis developed on REST architecture. This paper will

consider the implementation and documentation of

the api and try to check if the api is following the

REST constraints or not.

III. SYSTEM OVERVIEW

The proposed system will be designed in such a way

that the analysis of the REST APIs can be carried out

by considering the implementation as well as the

documentation of REST web api. Documentation of

RESTful API is written in swagger 2.0 format. The

springfox framework is used for generation of the

documentation from the implementation. Following

section will describe the architecture of the system

proposed.

 Design

There will be two inputs mainly require for our

system. First is the manual written document of the

system and second is the document generated by

springfox framework.

There will be 2 functional modules present in the

system. First module will generate a document from

the code. Second module will compare the generated

document with the hand written one and check for

the gaps present.

The rules are defined for the comparison of Swagger

document or OpenApi document. This comparison

will be used for generating the analysis report of the

api. The rules can be manipulated based on priority

of the developer.

 System Architecture

Figure 1 gives high level overview of different parts

of the system. Architecture consists of various

modules based on the functionality related to the

system. Analyzer and parser are the main

components of this system architecture. Parser will

work on two specification files used in this system.

One of the Module is developed by using the

Springfox framework which is an open source project.

This project is used to create the documentation

automatically from the implementation of the api in

the spring framework. This is the initial module of

the project.

The system has 2 swagger documents as inputs.

One of the open api specification document is the

documentation which was written before actual

implementation of the service. This document gives

the design details along with all the endpoint

information and their responses and parameters. The

implementation should take place by following this

Volume%203,%20Issue%203%20|%20March-April-2018%20
http://www.ijsrcseit.com/

Volume 3, Issue 5, May-June-2018 | http:// ijsrcseit.com

 Chaitanya Mukund Kulkarni et al. Int J S Res CSE & IT. 2018 May-June; 3(5) : 108-113

309

document. The second document i.e. swagger

document is created from the code using springfox.

This document is compared with the initial one by

following analysis rules defined to check if the

implementation covers all the necessary details of the

resource in the api or not.

Figure 1. System Architecture

 Software requirements & specification

The system which is developed for checking the

consistency between implementations of a restful

service and it's open api documentation dependents

on some of the open source technologies. The JDK on

which the project is checked is on JDK 1.8. The

dependencies of the software are as follows:

 OpenApi Specification 2.0,

 Spring Boot Framework,

 SpringFox Framework,

As the service is being developed in java language

spring boot framework is most popular framework

for REST api development.

IV. SYSTEM ANALYSIS

The REST api analysis is carried out by comparing the

inputs to the system. The analysis provides details

about the differences in the implementation and the

expected documentation. The auto generated

document represents the implementation of the api.

The reports generated by the system will consider the

details about correctly implemented apis, api

implementation with error, not implemented apis and

implemented but not documented apis. There will be

mainly 2 types of analysis the system will generate.

First one will give overview of the implemented or

not implemented apis. And second analysis report

will be regarding every single end point. In this

second analysis the end point with a particular verb

will be checked for it's uri representation, parameters,

responses along with consumes and accept mime

types.

Another major contribution of this paper is the

finding of the gap in documentation and

implementation. If some part of documented api is

not implemented the such gap is also reported.

 Result Analysis

This section will discuss the two types of analysis

results in details along with the gap identification

details generated by this technique.

The first analysis result can be viewed as overview of

the system analysis while second analysis result is

detailed analysis of each end point. Following result

values will be generated as first analysis.

Sr. No. Parameters to Check

1 Number of Resources

2 Number of Endpoints Expected

3 Number of Endpoints Implemented

4 Not Expected but Implemented Endpoints

5 Number of Gaps in System

6 Percentage of System completed

This table gives overview describing that, if the

service is implemented according to the specification

document requirements or not. Such analysis is

presented by values in the result table mentioned

above.

Volume%203,%20Issue%203%20|%20March-April-2018%20
http://www.ijsrcseit.com/

Volume 3, Issue 5, May-June-2018 | http:// ijsrcseit.com

 Chaitanya Mukund Kulkarni et al. Int J S Res CSE & IT. 2018 May-June; 3(5) : 108-113

310

The second analysis will consider each of the end

point documented and check whether the

implemented end point is similar to what

documentation design expected. In this analysis each

http verb and its details like header info, of a

particular end point will be checked with the

document. The result of this analysis will contain

following properties.

Sr.

No.

Details of Api Endpoint

1 Expected parameters and implemented

parameters

2 Expected consume mime type and

implemented consume mime types

3 Expected produces mime types and

implemented produces mime types

4 Expected http responses and implemented http

responses

From this result table, the difference in

implementation and documentation will be shown so

that the apis can be validated.

By using result of first and second analysis the gap

between expected system implementation and actual

implementation can be shown.

V. CONCLUSION

The system will be helpful in lot of ways to analyse

the REST api implementation. Proposed system can

be used for complex web service. Once the

implementation is completed, the implementation

and the documentation provided prior to actual

implementation both are checked by this system and

result is generated accordingly. If implementation

lacks some functionality or property related to any

resource it will be prompted to developer. The

approach described can also be used to check

whether the implementation and document follows

REST standards and if it is REST compliant or not.

VI. FUTURE WORK

Current system is being created by considering the

version of the open api specification 2.0. However,

the system can be upgraded for open api specification

3.0, as this version provides details about multiple

servers and much more. Basic design will remain

same. New upgrade will consider the details provided

by version 3. Right now, the system expects the code

of the implementation, however the work can be

extended for running api services.

VII. ACKNOWLEDGMENT

This project was sponsored by SAS Research &

Development, Pune. I take this opportunity to express

my deep sense of gratitude towards my project

mentor Rakesh Jadhav and Arvind Jagtap for their

valuable guidance and suggestions for the project.

VIII. REFERENCES

[1] R. T. Fielding and R. N. Taylor, Principled

design of the moder Web architecture, ACM

Trans. Internet Technol. 2, May 2002: 115-

150.

[2] Leonard Richardson and Mike Amundsen,

RESTful Web APIs”, O‟Reilly Media, 2013.

[3] M. Maleshkova, C. Pedrinaci, and J.

Domingue, Investigating web APIs on the

World Wide Web, The 8th IEEE European

Conference on Web Services (ECOWS 2010),

1-3 Dec 2010, Ayia Napa, Cyprus.

[4] P. Adamczyk, P.H. Smith, R.E. Johnson, and

M. Hafiz, "REST and Web services: In theory

and in practice", REST: from Research to

Practice, Springer New York, 2011.

[5] R. Fielding and J. Reschke, “Hypertext

Transfer Protocol (HTTP/1.1): Semantics and

Volume%203,%20Issue%203%20|%20March-April-2018%20
http://www.ijsrcseit.com/

Volume 3, Issue 5, May-June-2018 | http:// ijsrcseit.com

 Chaitanya Mukund Kulkarni et al. Int J S Res CSE & IT. 2018 May-June; 3(5) : 108-113

311

Content”, RFC 7231, 2014,

http://www.ietf.org/rfc/rfc7231.txt.

[6] D. Renzel, P. Schlebusch, and R. Klamma,

“Today‟s top „RESTful‟ services and why they

are not RESTful”, WISE, 2012.

[7] F. Petrillo, P. Merle, N. Moha, and Y.G.

Guéhéneuc, "Are REST APIs for Cloud

Computing Well-Designed? An Exploratory

Study." ICSOC 2016, Springer International

Publishing, 2016.

[8] Rodríguez, Carlos, et al. "REST APIs: A Large-

Scale Analysis of Compliance with Principles

and Best Practices." International Conference

on Web Engineering, Springer, 2016.

[9] M. Fowler, “Richardson maturity model: steps

toward the glory of rest”,

http://martinfowler.com/articles/richardsonM

aturityModel.html, 2010.

[10] Swagger, http://swagger.io/

[11] R.T. Fielding and R.N. Taylor, “Principled

design of the modern Web architecture”,

ACM Trans. Internet Technol. 2, May 2002:

115-150

[12] F. Haupt, D. Karastoyanova, F. Leymann, and

B. Schroth, “A modeldriven approach for

REST compliant services”, ICWS, 2014.

[13] F. Haupt, F. Leymann, and C. Pautasso. "A

conversation based approach for modeling

REST APIs." WICSA 2015 , IEEE, 2015.

[14] K. Vukojevic-Haupt, F. Haupt, F. Leymann,

and L. Reinfurt, "Bootstrapping Complex

Workflow Middleware Systems into the

Cloud." e-Science 2015, IEEE, 2015.

[15] F. Palma, J. Dubois, N. Moha, and Y.G.

Guéhéneuc, "Detection of REST patterns and

antipatterns: a heuristics-based approach",

ICSOC 2014, Springer Berlin Heidelberg,

2014.

[16] F. Palma, J. Gonzalez-Huerta, N. Moha, Y.G.

Guéhéneuc, and G.Tremblay, "Are restful apis

well-designed? detection of their linguistic

(anti) patterns." International Conference on

Service Oriented Computing. Springer Berlin

Heidelberg, 2015.

Volume%203,%20Issue%203%20|%20March-April-2018%20
http://www.ijsrcseit.com/
http://www.ietf.org/rfc/rfc7231.txt
http://martinfowler.com/articles/richardsonMaturityModel.html
http://martinfowler.com/articles/richardsonMaturityModel.html
http://swagger.io/

