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ABSTRACT 

 

Identification of land covers like crop-land, settlement, water-body and others from remote sensing images are 

useful for applications in the area of rural development, urban sprawl etc. In this paper we are addressing the 

task of identification of different land covers using remote sensed images which is further useful for image 

classification. Deep learning methods using Convolutional Neural Networks (CNN) for remote sensed or 

satellite image classification is gaining a strong foothold due to promising results. The most important 

characteristic of CNN-based methods is that prior feature extraction is not required which leads to good 

generalization capabilities. In this paper firstly we are presenting dataset prepared using multispectral, high-

resolution images from LISS-IV sensor and another dataset of PAN images created using coarse-resolution 

images from Landsat-8 sensor.  LISS-IV dataset is prepared for six commonly found land covers i.e. crop-land, 

water-body, bare-farm, road and settlement. Secondly we are proposing two patch-based Deep Convolutional 

Neural Networks (DCNN) models for prediction/identification of the land covers present in the image. 

Experiments conducted using the LISS-IV dataset has shown promising accuracies on both the DCNN models. 

Implementation of network is made efficient by harnessing graphics processing unit (GPU) power which 

reduces computation time. And finally, DCNN models are also evaluated for their performance using two 

similar publicly available benchmarked datasets, indicating that construction of models using described size of 

filters, number of filters and number of layers is suitable for multi-class remote sensing image patch prediction 

or identification. 

Keywords: LISS-IV dataset, Patch-based learning, Convolutional neural networks, Test accuracy, land-use, land 

covers. 

I. INTRODUCTION 

 
A large number of satellites capturing huge amount 

of images can be used for wide range of applications 

for land-use analysis, agriculture planning and rural 

& urban development. Visual world can be 

recognized better by using proper representation of 

objects. From an image, primitive features can be 

extracted followed by different parts of the object 

which leads to identification of the object. This is the 

key motivation behind deep learning, a branch of 

Machine Learning where neural networks are 

constructed with more than one hidden layer called 

as Deep learning Networks.  For image classification, 

deep learning methods using Convolutional Neural 

Networks (CNN) can be applied to develop 

generalized algorithms which can be used for solving 

problems of different domains. The most important 

characteristic of CNN-based methods is that prior 

feature extraction is not required which leads to good 
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generalization capabilities. CNNs have shown good 

performance in object recognition, object detection 

and remote image classification [1, 2, 3].  

CNNs are inspired by the working of visual system of 

human beings where we do visual perception of 

things present around us using a layered architecture 

of neurons [4]. Hand-crafted feature extraction was 

the main method used for image classification, as 

reflected in most of the traditional image 

classification. CNN can learn suitable internal 

representations of the images. By using CNNs, 

learning models are able to obtain conceptual 

sensitivities by each layer. CNNs work as feature 

extractors and classifiers which are trainable as 

compared to traditional classifiers which makes use 

of hand-crafted features. 

 

The key contributions of this paper: 

1. Creation of new dataset using satellite images 

from high resolution Linear Imaging Self- 

Scanner (LISS-IV), consists of 2500 image scenes 

which is increased to 18000 images using data 

augmentation, labelled for six different classes. 

This dataset can be used for training of CNNs for 

land use and land cover classification tasks. 

Another dataset is created using PAN band of 

Landsat8 Images. Ten images acquired over a 

period of one year have been used to create the 

dataset. This dataset is small with only 1000 

image scenes and could be created only for three 

classes i.e. water, crop-area and settlement, due 

to small size of pixel. The PAN band of Landsat8 

has spatial resolution of 15m. 

2. Proposed a patch-based learning framework to 

design deep CNN (DCNN) models which can 

identify various land use and land covers 

present in a satellite image. Our study also 

shows that training process can be speed up by 

utilizing GPU power which will make it 

possible to scale up such models for larger inputs 

and train them on large datasets. 

 

Further paper is arranged as follows. Section II is 

discussing related work carried out in the similar 

domain. Section III describes the methodology 

covering architecture of proposed DCNN models, 

study area and experimental setup. Section IV 

describes results and discussions followed by 

conclusions with future scope in section V.  

 

II. RELATED WORK 

 

Deep neural networks can learn effective feature 

representations from a big training dataset and these 

features can be used for classification purposes. This 

area of remote sensing area is progressing at slow 

pace because of less availability of labelled ground 

truth datasets. Yang and Newsam presented an 

intensively researched remote sensing image 

classification dataset known as UC Merced Land Use 

Dataset (UCM) [5, 22]. The dataset consists of twenty 

one land use and land cover classes. Each class has 

100 images and the images are present in size of 

256x256 pixels with a spatial resolution of about 30 

cm per pixel. All images are in the RGB colour space 

and were extracted from the USGS National Map 

Urban Area Imagery collection. Helber et al., 

recently proposed a novel satellite image dataset for 

land use and land cover classification, EuroSAT [6]. 

This dataset consists of 27,000 labelled images and is 

created from Sentinel-2 satellite images. There are 

ten different classes present in the dataset namely, 

industrial, residential, annual crop, permanent crop, 

river, salt lake, highway, vegetation, pasture and 

forest. Image dataset is provided in two formats, one 

covering 3 bands and other one having 13 spectral 

bands.  

 

A remote sensing image classification benchmark 

(RSI-CB) based on massive, scalable, and diverse 

crowd-source data has been presented [7]. Dataset 

has been labelled using Open Street Map (OSM) data, 

ground objects by points of interest and vector data 

from OSM leading to a large-scale benchmark for 

remote sensing image classification. This benchmark 
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has two sub-datasets with 256 × 256 and 128 × 128 

sizes, as requirements of designed DCNNs, for image 

sizes. The first dataset has six categories with 35 

subclasses of more than 24,000 images and the 

second one has also six categories with 45 subclasses 

of more than 36,000 images. The main categories are 

agricultural land, construction land, transportation, 

water, woodland, and other lands, along with their 

several subclasses. Others publicly available datasets 

are: WHU-RS19, having 1005 images for 19 

categories with image patch size of 600x600, SIRI-

WHU having 2400 images for 12 classes with image 

patch size of 200x200, RSSCN7 with 2800 images, 

patch size of 400x400 for 7 classes, RSC11 having 

1232 images, patch size of 512x512 for 11 classes, 

Brazilian coffee scene with 2876 images, patch size of 

64x64 for 2 classes i.e. coffee and non-coffee [8, 9, 10, 

21, 22, 23, 24]. Interested authors can read 

comprehensive review of these datasets [11]. They 

have also proposed, NWPU-RESISC45, which can be 

used for remote sensing image classification. It has 

31500 images, for 45 classes [11]. Images of this 

dataset has large number of image scenes with 

variations in translation, spatial resolution, viewpoint, 

object pose, illumination etc. 

 

A convolutional neural network (CNN) has been 

applied to multispectral orthoimagery with spatial 

resolution of 0.5m and a digital surface model (DSM) 

of a small city producing fast and accurate per-pixel 

classification [12]. Authors evaluated and analysed 

various design choices of the CNN architecture. 

Finally it was concluded that CNNs are a feasible tool 

for solving both the segmentation and object 

recognition task. Two new satellite datasets called 

SAT-4 and SAT-6 have been prepared from images 

taken from the National Agriculture Imagery 

Program (NAIP) dataset [13]. Images are acquired in 

patch size of 28x28 and consists of four bands- red, 

green, blue and Near Infrared. They have also 

proposed a classification framework which extracts 

features from the normalized input image and these 

feature vectors are given as input to a Deep Belief 

Network for classification. Authors observed that for 

SAT-4 dataset, on their best network produced a 

classification accuracy of 97.95% and for SAT-6, it 

produced a classification accuracy of 93.9%. Yang 

and Newsam investigated bag-of-visual-words 

(BOVW) methods for land-use classification for 

high-resolution imagery [22].  Authors have 

proposed a novel method, termed as the spatial co-

occurrence kernel which takes into account the 

relative arrangement. Methods are evaluated using a 

large ground truth image dataset, UC Mercedes 

consisting of 21 land-use classes. Authors concluded 

that even though BOVW methods do not always 

perform better than the standard approaches, but 

they can be used as a robust alternative which is 

more effective for certain land-use classes.  

 

Supervised data mining methods like neural 

networks, support vector machines and random 

forests majorly use spectral information. This 

information change due to impact of weather 

conditions, sensor geometry etc. Information 

extraction process can be mechanized to overcome 

drawbacks of hand-crafted methods. High 

classification accuracies are obtained for very high 

spatial resolution images and mostly for the cases 

where training images are completely hand-labelled 

i.e. per-pixel. This kind of 100% labelled data is not 

available easily so we have taken the approach of 

patch-based dataset creation. In this approach, label 

is assigned to the entire patch as compared to 

labelling every pixel. We are addressing the 

challenge of less availability of labelled dataset to 

train a CNN by creating a new dataset built from 

multispectral sensor with spatial resolution of 5.8 m 

(which is much lower than the resolution of  images 

used by majority of researchers) and also PAN band 

dataset from coarse-level resolution sensor, Landsat-8 

having spatial resolution of 15m. We have also 

attempted to propose two new DCNN architectures 

with few number of convolutional layers which can 

be efficiently trained and tested using the new 
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proposed datasets and also compared their 

performance with standard benchmark dataset.  

 

III. METHODOLOGY  

 

A. Deep convolutional neural networks (DCNN) 

architecture 

Deep convolutional neural networks have shown 

very good performance in experiments conducted on 

remote sensing images for classification or object 

detection purposes. Constructing a DCNN requires 

major steps: creating the convolutional neural 

network architecture, preparing training and test 

data and initializing parameters for training process. 

In CNNs/DCNNs, the properties related to the 

structure of layers, number of neurons, number & 

size of filter, receptive field (R), padding (P), the 

input volume dimensions (Width x Height x Depth, 

or N x N x B) and stride length (S) are called hyper-

parameters [14, 15]. Connecting all the neurons with 

all possible areas of the input volume is a difficult 

task and leads to large number of weights to train. 

This results in a very high computational complexity. 

So, instead of connecting each neuron to all possible 

pixels, a 2- dimensional region,  say of size 5×5 pixels 

is defined and it extends to the depth of the input, 

making receptive field size to be 5x5x3 (for 3 band 

input image). Computations are carried out for these 

receptive fields producing the activation map.  

 

First step is to choose filter/ kernel of appropriate size 

to convolve over the input image. The main goal of 

this step is to identify key features in the image. This 

convolution operations produces activation maps. 

Activation maps represent „activated‟ neurons/ 

regions, i.e. area where features specific to the kernel 

have been found in the input patch. Initialization of 

weight values to filter is done randomly here and 

then these values are updated with each learning 

iteration over the training set, as part of back 

propagation. Convolution operations find significant 

features like edges, lines and intensity, when 

appropriate filters are convolved over the image 

patch. Selection of proper size of the filters is very 

important step to identify the significant features. 

Therefore it‟s very important to find the appropriate 

size of the kernel/filter. In our design of DCNN, 

kernel size used are 5x5, 3x3 and 1x1 depending 

upon the input size of patch for that convolution 

layer. The keys points in designing a DCNN model 

are setting local connections and pooling. The main 

goal of pooling layer is to reduce the dimensionality 

of input data, also called as down-sampling. If 

pooling is removed, the dimensionality of the 

problem increases drastically leading to large training 

time. While deciding stride factor for pooling, care 

must be taken that it doesn‟t result in loss of 

information.  

 

Any raw image of any size can be given as input to 

the algorithm designed which is first resized to the 

desired image patch size of 32x32. Resized image 

patch (multispectral image) is fed as input to DCNN. 

Image patch is represented as a 3D tensor of 

dimensions N x N x B, where N represents length & 

width of the image and B is number of 

bands/channels. Therefore, all the factors discussed 

above play a significant role in making deep 

networks get trained. Architectural building blocks 

of DCNN models are shown in Figure 1. In the 

models designed by us, for pooling layer, a stride 

factor of 2 is used. This layer is usually placed after 

convolution layer. Even though pooling results in 

some amount of information loss, it still is found 

beneficial for the network as reduction in size leads 

to less computational overhead for the upcoming 

layers of the network and it also work against over-

fitting.  

 

An important role in the training process is the 

choice of activation function, the way weights are 

initialized, and how learning is implemented. 

Activation functions are identity or linear function, 

sigmoid or logistic function, hyperbolic tangent and 

Rectified Liner Unit (ReLU). Major role is played by 

the choice of activation function, most widely used is 
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ReLU [16]. The output layer is the softmax layer 

which produces a set of output activations 

representing predicted probabilities which always 

sum to 1. 

 

The function of the Softmax layer is to convert any 

vector of real numbers into a vector of probabilities, 

thus corresponding to the likelihoods that an input 

image is a member of a particular class. Batch 

normalization potentially helps in two ways: faster 

learning and higher overall accuracy. It is performed 

on the mini-batch size specified in the parameters. 

For normalization purposes, we divide the calculated 

value of the activation matrix by the sum of values in 

the filter matrix. Since there is a very large number 

of patches in our dataset we use stochastic gradient 

descent with mini batches for optimizing learning.  

 

 

 

 
Figure 1. Architectural building blocks of DCNN models 
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Figure 2. Deep Convolutional Neural Network Model 1(a) and Model 2 (b) 

 

B. Creation of training and test labelled dataset 

CNNs require large number of images for training for 

learning task. The image resolutions, size and scale of 

objects impacts the training process, as task-relevant 

information varies with spatial resolution. How an 

object is recorded in image depends on object‟s 

location, angle of capture and its size. This is to be 

considered for data augmentation. CNNs can deal 

with change in location as weights are shared in 

convolutional layers. Majority of the researchers 

have used hand-labelled dataset created for both 

training and testing and since labelling images is a 

very time consuming process, the datasets have been 

small in both aerial image applications and general 

image labelling work [12, 17, 18].  For this paper, the 

study site is Navin Kaigaon village of Maharashtra, 

India. The study area as shown in figure 3 lies 

between 19° 10' 1.6" to 21° 16' 29.75" North Latitude 

and 74° 43' 44.83" to 76° 53' 42.79" East Longitude. It 

has mixture of land covers i.e. road, water body, 

buildings, bare farms and largest area has sugarcane 

crop. This region has majorly agricultural land and a 

large number of fields have sugarcane crop at various 

growth stages. So, the focus of this study is to 

identify sugarcane at ripening/ growing and 

harvest/senescence stage along with other land 

covers. The study area has sugarcane crop at various 

growth stages. Fields of the study area are irregular in 

shape and size. Fields vary from one acre to twenty 

acres and even larger. The satellite data from LISS-IV, 

considering size of the crop fields. As the spatial 

resolution is 5.8m for the bands green, red and near 

infrared (NIR). These bands are most commonly used 

for identification of crops.  
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Figure 3. The study area is in the center of 

Maharashtra, Navin Kaigaon, India. Left hand-side is 

map of the Maharashtra state and right-hand side is 

image subset obtained from LISS-IV. 

 

To construct the labelled dataset for image 

classification, satellite image of IRS LISS-IV sensor, 

high resolution imagery from commercial satellite 

was acquired for the study region. It has pixel size of 

5.8m and spectral range from 0.52 µm to 0.86 µm. 

The image is color- Infrared image i.e. bands are 

combined as NIR, Red and Green (CI Image). Then 

training/ test dataset is created as image patches 

where regions of interest for every class are created 

separately. These image patches are further resized to 

desired patch size of 32x32, which is given as input 

to CNN‟s first layer. Dataset for six land covers 

(classes) have been prepared and manually checked 

as per the given number of image patches for every 

class:  

1. Sugarcane Crop- Full Growth stage (6 to 8 

months old) : 550 image patches 

2. Sugarcane Crop- Harvest stage (12 to 14 

months old) : 550 image patches 

3. Water-body : 400 image patches 

4. Settlement : 500 image patches 

5. Road : 200 image patches 

6. Bare-farm :300 image patches 

 

Number of image patches are varying due to 

percentage of presence of land covers present in the 

study scene. Image patches are resized to 32x32 

pixels size. This dataset is further increased to 3000 

images per class using data augmentation methods 

like image rotation, flipping, Gaussian filtering for 

improving accuracy and reducing over-fitting. Data 

augmentation is transforming an image that doesn‟t 

change the image label. There are many ways to do it 

like rotation, scaling, flipping, cropping (random), 

color jittering etc. Also RGB intensities can be 

altered. Total images used are 3000x6 = 18,000, out of 

which 80% are used for training and 20% for testing 

purpose. Figure 4 shows sample image patches of the 

dataset created. The mean spectral reflectance curve 

of all six classes which is used to consider image 

patches for inclusion into the dataset is recorded 

while image patches were prepared to be added to 

final dataset. Those image patches whose mean 

reflectance values deviated outside the desired range 

were removed from the dataset, as they contained 

large number of mixed pixels.  

 

       
a. Sugarcane Crop- Full Growth stage 

       
b. Sugarcane Crop- Harvest stage 

       
c. Road 

       
d. Settlement 

       
e. Bare-Farm 

       
f. Water-body 

Figure 4(a-f): Sample image patches created for 

training and testing  dataset, representing all six 

classes:  Sugarcane Crop- Full Growth stage, 

Sugarcane Crop- Harvest stage, Road, Settlement, 

Bare-Farm and Water-body 

Another labelled dataset consisting of image patches 

from Landsat8, using only PAN Band for image 

classification. Ten images are acquired for a period of 

one year, 19th April, 2016 to 24th May 2017 

downloaded from the USGS Earth Explorer database 
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(United States Geological Survey) 

(http://earthexplorer.usgs.gov) [20]. Images 

considered for study have cloud cover less than 10%. 

Landsat-8 has 16 days repeat cycle, providing data at 

swath of 185kms. Images are Level 1T (terrain 

corrected) scene of the OLI/TIRS sensor, of path / 

row: 146 / 46. Landsat-8 provide images in 11 bands 

with spatial resolution of 30 m for seven 

multispectral bands, 15m for PAN band and 2 

thermal bands acquired at 100m, resampled to 30m. 

Spectral resolution of PAN band is 0.50 µm to 0.68 

µm. Then training/ test dataset is created as image 

patches where regions of interest for every class are 

created separately. These image patches are further 

resized to desired patch size of 32x32, which is given 

as input to CNN‟s first layer. Dataset for three land 

covers (classes) have been prepared and manually 

checked as per the given number of image patches 

for every class: Crop-farms: 350 image patches, 

Water-body: 350 image patches and Settlement:  300 

image patches. This dataset is further increased to 

1000 images per class using data augmentation 

methods, creating a total of 3000 image patches. 

 

C. Experimental setup with parameters set for 

training network 

We have implemented DCNNs using MatConvNet 

[19]. It is a MATLAB toolbox implementing 

Convolutional Neural Networks (CNN). CNNs need a 

lot of training data for learning process and also 

requires efficient implementations. MatConvNet 

provides this as it has methods for optimizations and 

supporting computations on GPUs. Building blocks 

of CNNs, convolution, normalisation and pooling can 

be easily combined and extended build DCNN 

models. MatConvNet is open-source released under a 

BSD-like license, simple to install and easy to use. 

Our model is implemented in MATLAB R2017a on 

Intel i7 -7500U CPU @ 2.70 GHz, NVIDIA GeForce 

940MX graphic device with 8G byte graphic memory 

having Windows 10 operating system installed. 

 

After creating DCNN models, they are trained by 

providing the created labelled datasets separately 

with LISSIV for five/six classes and Landsat-8, PAN 

dataset for three classes. The base learning rate is 

0.0001, parameters to compute increments are: 

momentum = 0.9, and weight decay = 0.0005. The 

number of epochs are varied from 100 to 500 to 

check accuracy. DCNN models are trained with 

different batch sizes of 64, 128 and 256 where 128 is 

found to give best performance. Batch sizes is 

number of samples loaded into memory for the 

training phase of the DCNN. Models processes the 

complete training dataset, by making increments 

defined as batch size. Batch size is used for efficient 

computations and is also dependent on the hardware 

where CNN is trained. During training the DCNN, 

data used from the training set will minimize the 

error. The validation data is used to check the 

response of the CNN model on new and similar 

images, which network hasn‟t seen before i.e. it is 

not trained on. Validation or test data passes only in 

forward pass, as no error is calculated in this pass. As 

the training and testing process is completed, CNN 

model is saved and used to compute confusion 

matrix. Setting the value of learning rate is an 

important step as this values takes the network 

towards convergence, and selecting the appropriate 

value is an empirical process. Throughout the 

training phase of the CNN, the network generates 

three plots showing, Top1 error, Top 5 error, and 

objective for every successful epoch. The top1 error 

depicts that, the class with the highest probability is 

the true correct target, i.e. network found the target 

class. The top 5 error depicts that, the true target is 

one of the five top probabilities. The last layer, i.e. 

softmax is attached for final classification and it is 

fully connected. It has a filter depth of C i.e. number 

of classes of the remote sensed scene database. In our 

CNN model, filters of size 3x3xC, 5x5xC have been 

used with random weight initialization, where C is 

number of bands. To improve accuracy of our 

designed model, we incorporated data augmentation 

in the dataset preparation process.  
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IV. RESULTS AND DISCUSSIONS 

 

To evaluate classification accuracy of the DCNN 

models, confusion matrix is generated after training 

process is completed. The impact of change in 

number of epochs on the classification accuracy is 

recorded. It has been observed that training time 

increases as the number of filters increase. Impact of 

different activation functions, ReLU and sigmoid is 

also computed and found that ReLU achieves higher 

classification accuracy. It is recommended to do 

extensive searching by applying a range of values to 

hyper-parameters to reach the best performance of 

the CNN models. This process requires a large 

amount of computations and is done using trial and 

error. We considered different size of filters in the 

range 1x1, 3x3, 5x5, 7x7 and also number of filters 

from 10 to 100, before making the final architecture. 

 

We have evaluated performance of DCNNs model by 

considering “Loss”, “Overall Accuracy”, “precision” 

and “recall”. The term “Loss” is used during the  

training process to find the appropriate hyper- 

parameter values for the model i.e. weight values. 

This value is continually optimized in the training 

process by updating weights. Overall accuracy is 

calculated after the loss value has been optimized. It 

measures the extent of how accurate is the model's 

prediction as compared to the labelled or target class. 

MatConvNet generates training and validation log 

likelihoods after every epoch during training cycle. 

Initially the curve of the validation log likelihood 

shows higher correct prediction values as the dataset 

of validation/ test is relatively 20% of the total 

dataset. Also, the distance between training and 

validation curves remains moderately constant as the 

training cycle proceeds depicting that there is very 

less over-fitting. 

 

The performance of model is good as long as the cost 

curve for training and validation is reducing. It can 

be checked after every epoch. In case if it starts 

increasing means the model has started to over-fit 

and further training the model is of no use. The other 

measures used to compute performance of 

classification done by DCNN is precision, recall and 

kappa statistic. The precision is the fraction of 

predicted C instances which are true C instances. 

And the recall of a set of predictions is the fraction of 

true C instances that were correctly detected. These 

indexes are calculated from the confusion matrix C. 

The Kappa statistic compares the Observed 

Accuracy with Expected Accuracy. It is a measure of 

how closely the instances classified by the classifier 

model matched with the labeled data. Kappa value 

can also be used to compare performance of two 

classifiers performing the same classification work. It 

is recommended to use kappa value for classifiers 

made and evaluated on data sets with varying class 

distributions. Average Speed of the DCNN models 

were 4231 Hz means it could process 4231 images per 

second. 

 

DCNN models 1 and 2 were trained and tested using 

LISSIV dataset for all six classes and it was observed 

from confusion matrix that class bare-farm shows 

least number of correct predicted instances. It is 

observed from image patches given as input, that 

bare-farms couldn‟t be marked correctly due to 

mixed pixels with leftovers of last crop. So models 

were again trained using LISSIV dataset for five 

classes i.e. Sugarcane Crop- Full Growth stage, 

Sugarcane Crop- Harvest stage, Road, Water-body 

and Settlement. The classification accuracy of 

model1 for six classes is 92.92% and for five classes 

(leaving bare-farm) is 97.56%. It was also observed 

that predicted labels for Sugarcane Crop- Full 

Growth stage and Sugarcane Crop- Harvest stage in 

both experiments with six and five classes is observed 

to be 100% correct by Model 1. This indicates that 

DCNN models are able to accurately identify crop 

present at different growth stages. Table 1 shows the 

various measures computed from confusion matrix 

for both the models trained and evaluated on five 

classes for different number of epochs. The batch-
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size is kept to be 128 for all the experiments recorded 

in this table. 

 

DCNN models were also trained by changing 

activation function to sigmoid and it was observed 

test accuracy of model 2 goes down drastically to 44% 

whereas for model1 is 92.75%. Since, we created a 

PAN dataset using images from Landsat8 sensor to 

check how our DCNN models perform on PAN data, 

it was observed that test accuracy is 66%. Fu et al., 

have used fully convolutional network for classifying 

high spatial resolution remote sensing imagery with 

12 classes [17]. Accuracies of our models is recorded 

to be better than their approach. Authors have 

explained their results are less accurate due to 

confusing classes present in the images used and in 

their study they have used 12 classes and many of 

these classes (building, cement ground, road, and 

parking lot) potentially contains mixed pixels. In our 

study we have classified six classes and are found to 

be separable except for bare-farm. We have also 

evaluated performance of proposed models for two 

benchmarked datasets:  

 

1. EuroSAT, a dataset created using Sentinel-2 

satellite images, provided in 3 bands and 13 

bands for 10 classes. Every class has 3000 

images. We have used 3 band dataset for 

evaluating our models [6]. 

2. UC Mercedes consists of 21 class land use 

image dataset, having 100 images for each 

class. Each image is provided as 256x256 

patch [22]. 

 

As depicted by table 2, our proposed DCNN models 

1& 2 have overall accuracy of 98.1% & 96.28% on 

the LISS-IV dataset created. This classification 

accuracy is at par with accuracy attained on the two 

benchmarked dataset used. We have also compared 

the accuracy attained by Helber et al., on EuroSAT 

dataset for CIR image, since our dataset is in CIR 

band combination. DCNN model 1 has also attained 

same accuracy on the same dataset [6]. Performance 

is more efficient on our model since number of 

convolutional layers used is 3 & 4 and they have used 

fine-tuned ResNet-50 having 8 convolutional layers. 

PAN dataset trained on the same models doesn‟t have 

required accuracy. 

 

 

Table 1. Overall Accuracy (OA), Kappa value, precision and recall measures for model 1 and 2. 

 Epochs OA 

% 

Kappa Precision (Producers Accuracy) % Recall (Users Accuracy) % 

    G H R S W G H R S W 

Model 1 400 98.10 0.97 100.00 100.00 97.22 98.33 91.67 97.56 91.60 99.72 99.72 99.40 

 300 97.28 0.97 100.00 100.00 98.33 96.67 91.39 98.09 92.07 98.33 99.15 99.40 

Model 2 400 96.28 0.95 98.61 98.33 96.94 95.83 91.67 93.92 93.40 96.87 98.29 97.35 

 300 96.83 0.96 98.89 96.39 98.61 98.06 92.22 97.80 93.03 98.61 97.78 97.08 

(G: Sugarcane crop- Full Growth stage, H: Sugarcane crop- Harvest stage, R: Road, S: Settlement, W: Water) 

Table 2. Validation/test accuracy results for four datasets. 

DCNN Model No. of Conv. 

layers 

EuroSAT UC Mercedes LISSIV Landsat8 PAN 

Dataset Type Multi-Spectral Multi-Spectral Multi-Spectral PAN 

Spatial Resolution 10m 30cm 5.8m 15m 

DCNN model 

1 

3 97.00% 95.40% 98.10% 66.10% 

DCNN model 

2 

4 95.20% 94.60% 96.28% 50.03% 

ResNet-50 (22) 8 98.32% 96.42% -- -- 



Volume 3, Issue 3, March-April-2018 

Parminder Kaur  et al. Int J S Res CSE & IT. 2018 Mar-Apr;3(3) : 2123-2134 

 
2133 

 

 
 

Figure 5. Error curve for DCNN Model 1 and 2 for 

batch size of 64, 128 and 256. 

 

Impact of different size of batch provided (64, 128 

and 256) on the performance of the DCNN Model 1 

and 2 is as shown in figure 5, for LISS-IV dataset. 

Error reduces smoothly when batch size is 128 as 

compared to 64 even though the accuracy attained is 

same. For batch size of 256, there is slow 

convergence and better accuracy is obtained using 

either 128 or 64 batch size. 

 

V. CONCLUSIONS WITH FUTURE SCOPE 

 

This paper has presented dataset consisting of 

multispectral, high-resolution images from LISS-IV 

sensor and another dataset of PAN band created 

using coarse-resolution images from Landsat8 sensor. 

The dataset created using LISS-IV has shown 

promising accuracies on the two DCNNs models 

proposed here. The results show that DCNN models 

designed can identify crop land present in a satellite 

image along with commonly found land cover classes, 

water-body, bare-farm, road and settlement. As 

DCNN models are also evaluated for their 

performance using two similar publicly available 

benchmarked datasets, indicating that construction 

of models using described size of filters, number of 

filters and number of layers is suitable for prediction 

of land cover. The approach used in our models is 

patch-based and size of input patches taken as 32x32 

is also justified, considering spatial resolution of 

LISS-IV and Landsat-8. Using only a specific set of 

features like spectral reflectance values or manually 

derived features, cannot help achieve good 

classification results. The proposed models are taking 

input as 3-D image tensor i.e. it considers the spectral 

features (3 bands) as well as spatial neighbourhood 

also (32x32). The models presented are working with 

98% accuracy to identify or predict unknown image 

patches. This work can be further extended by using 

the trained DCNN models for large size satellite 

image classification.This LISS-IV dataset can be 

augmented using LISS-III images as it has same 

spectral resolution and different spatial resolution 

(23.5m). LISS-III images can be up-sampled (putting 

more pixels) to the resolution of LISS-IV (5.8m) 

before creating the image patches for dataset. Also 

more classes like other crops grown can be added by 

collecting images from different parts of the country.  
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