
CSEIT183611 | Received : 01 July 2018 | Accepted : 08 July 2018 | July-August-2018 [3 (6) : 32-37]

International Journal of Scientific Research in Computer Science, Engineering and Information Technology

© 2018 IJSRCSEIT | Volume 3 | Issue 6 | ISSN : 2456-3307

32

Analysis the Strength of Agile Methodologies in Software

Development
K M. Jyoti1, Mr. Tinku Singh2, Parul Saharavat3

1M.Tech Scholer J.P.I.E.T, Meerut, Uttar Pradesh, India
2Department of computer science J.P.I.E.T, Meerut, Uttar Pradesh, India

3Department of computer science D.N. Polytechnique, Meerut, Uttar Pradesh, India

ABSTRACT

There are several software development methodologies in use today. Some companies have their own

customized methodology for developing their software but the majority speaks about two kinds of

methodologies: heavyweight and lightweight. The strengths and weakness between the two opposing

methodologies are discussed and the challenges associated with implementing agile processes in the software

industry are provided. According to our findings agile methodologies can provide good benefits for small scaled

and medium scaled projects but for large scaled projects traditional methods seem dominant. The study also

focuses the different success factors of agile methods, the success rate of agile projects and comparison between

traditional and agile software development.

Keywords : Software Process, Software Development Methodology, Agile, Heavyweight Methodologies.

I. INTRODUCTION

Software has been part of modern society for more

than 50 years. Software development started off as a

messy activity often mentioned as “code and fix”. The

software was written without much of a plan, and the

design of the system was determined from many

short term decisions. This worked well for small

systems but as systems grew it became more difficult

to add new features and bugs were harder to fix. This

style of development was used for many years until

an alternative was introduced: Methodology.

Methodologies impose a disciplined process upon

software development with the aim of making

software development more predictable and more

efficient. Traditional or heavyweight methodologies

are plan driven in which work begins with the

elicitation and documentation of a complete set of

requirements, followed by architectural and high

level design development and inspection. Due to

these heavy aspects, this methodology became to be

known as heavyweight. These methodologies and

practices are based on iterative enhancements, a

technique that was introduced in 1975 and that has

become known as agile methodologies.

II. ORGANIZATION OF TITLE

The goal, therefore, is to begin filling in the gap of

methodologies by conducting a detailed review of

both heavyweight and agile methodologies. For

heavyweight method, several methods are reviewed

such as Waterfall, Unified Process and Spiral. Further

an overall view of the characteristics of heavyweight

methods is discussed. Next, the same procedure for

agile methodologies is followed. Some agile

approaches such as Extreme Programming, Scrum,

Dynamic System Development Method, Feature

Driven Development and Adaptive Software

Development underlining the characteristics of agile

methods are introduced. Furthermore, a comparison

of the different agile methods in order to highlight

http://ijsrcseit.com/

Volume 3, Issue 6, July-August-2018 | http:// ijsrcseit.com

K M. Jyoti et al. Int J S Res CSE & IT. 2018 July-August; 3(6) : 32-37

 33

the similarities and differences between them are

carried out. The next section criticizes the limitations

of each heavyweight and agile methods. Following

this, the challenges associated with implementation

of agile processes in the software industry according

to software practitioners and anecdotal evidence.

III. PROBLEM STATEMENT

 Now a days in any field like business, education,

sports etc. the success depend on the software being

used, due to the fast development in technology the

organizations needs its software updated and the

software should meet all the business needs. The

rapid growing completions between the organizations

have created a challenge for the software

development companies (Czarnacka-Chrobot, 2010).

The agile software process is the combination of the

best practices and their previous success and failure

experiences with many software development

projects regarding what works and what not. Each of

these two practitioners (best practice and previous

success and failure experience) had their own

different philosophies about how they approached

software development. However, all of them

advocated close collaboration between software

development and business teams, as opposed to silo

development by software teams; face-to-face

communication, as opposed to over-emphasis on

written documentation in projects; frequent delivery

of portions of working software, as opposed to final

delivery of the complete product at the end;

accepting changing requirements by customers, as

opposed to defining a fixed set of requirements “cast-

in-stone”; and adaptive organizational capability of

teams according to changing business requirements

(Misra et al., 2009).

Figure 1. Software process (Pressman, 2001)

The word agile means light weight; the main theme

of agile method is the simplicity and speed. The main

points of agile methods according to Fowler and

Highsmith (2001) are Incremental (small software

releases, with rapid cycles) Cooperative (customer

and developers working constantly together with

close communication) Straightforward (the method

itself is easy to learn and to modify, well documented)

Adaptive (able to make last moment changes).

IV. HEAVYWEIGHT METHODOLOGIES

Software development Process models are used for all

most all type of software development projects and

according to Sommerville (2011) a software model is

the simplified form of a software process that

represents a particular perspective and provides

partial information about the process.Software

process is a framework of activities that are involved

in all most all the software projects regardless of the

size and complexity of the tasks (Pressman, 2001).

Those phases are listed below.

 Software specifications: Here the functionality

of the software is defined and the constraints

on the operations of those functionalities are

defined.

Volume%203,%20Issue%203%20|%20March-April-2018%20
http://www.ijsrcseit.com/

Volume 3, Issue 6, July-August-2018 | http:// ijsrcseit.com

K M. Jyoti et al. Int J S Res CSE & IT. 2018 July-August; 3(6) : 32-37

 34

 Software design and implementation: The

software which can complete the required

specification can be produced.

 Software validation: The software should satisfy

the customer, means the software should

perform all the tasks for which it is produced.

 Software evolution: The software must be ready

to meet the changing customer need.

V. HEAVYWEIGHT METHODOLOGIES

CHARACTERISTICS

The heavyweight development methodology is based

on a sequential series of steps, such as requirements

definition, solution build, testing and deployment,

whereas lightweight methodologies propose

executing the project steps in parallel. For example,

the manager of a project that is based on the

heavyweight methodology won‟t agree to build the

IT solution until the full requirements have been

determined, and so it continues for each project

phase. Still, any project team larger than 10-20 people

and working in multiple locations may be a good

candidate for a heavyweight methodology.

Heavyweight methodologies can be the better choice

when you have multiple teams working at different

locations and you need tighter control to formalize

key parts of the project.

VI. COMPARISON OF VARIOUS HEAVYWEIGHT

METHODOLOGIES ON THE BASIS OF DIFFERENT

PARAMETERS

Table 1. Comparison of different Heavyweight

Methodologies

MODEL/

MERITS

WATE

RFALL

MODE

L

ITERA

TIVE

WATE

RFALL

MODE

L

PROT

OTYP

E

V-

SHAP

ED

SPI

RA

L

MODE

L

MO

DEL

Success

rate

Low High Good High Hig

h

Cost Low Low High Very

high

Hig

h

Flexibilit

y

Rigged Less

flexibil

ity

Highl

y

flexibl

e

Little

flexible

Flex

ible

Risk

analysis

High No risk

analysi

s

Low Low Low

Cost

control

Yes No No Yes Yes

Reusabili

ty

Limite

d

Yes Weak Low Yes

Risk

analysis

Only

at

beginn

ing

Low No

risk

analys

is

Low Yes

Impleme

ntation

time

Long Less Less Less Dep

end

s on

proj

ect

Interface Minim

um

Crucial Curial Minim

um

Cru

cial

Security Vital Limite

d

Weak Limite

d

Hig

h

Expertise

required

High High Medi

um

Mediu

m

Hig

h

Simplicit

y

Simple Simple Simpl

e

Interm

ediate

Inte

rme

diat

e

User

involvem

ent

Only

at

beginn

ing

At the

beginn

ing

High At the

beginn

ing

Hig

h

Resource

control

Yes Yes No Yes Yes

Volume%203,%20Issue%203%20|%20March-April-2018%20
http://www.ijsrcseit.com/

Volume 3, Issue 6, July-August-2018 | http:// ijsrcseit.com

K M. Jyoti et al. Int J S Res CSE & IT. 2018 July-August; 3(6) : 32-37

 35

VII. AGILE MODELING

Agile – devoting “the quality of being agile; readiness

for motion; nimbleness, activity, dexterity in motion”

as mentioned in the Oxford Dictionary [13] –

software development methods are attempting to

offer once again an answer to the eager business

community asking for lighter weight along with

faster and nimbler software development processes.

Following are the Agile Manifesto principles:

 Individuals and interactions - In agile

development, self-organization and motivation

are important, as are interactions like co-

location and pair programming.

 Working software - Demo working software is

considered the best means of communication

with the customer to understand their

requirement, instead of just depending on

documentation.

 Customer collaboration - As the requirements

cannot be gathered completely in the beginning

of the project due to various factors, continuous

customer interaction is very important to get

proper product requirements.

Responding to change

Agile development is focused on quick responses to

change and continuous development. All these

methodologies acknowledged that high quality

software and more importantly customer satisfaction

could only be achieved by bringing “lightness” to

their processes. Some of the most used agile

methodologies are listed below.

VIII. EXTREME PROGRAMMING (XP)

Extreme programming (XP) has evolved from the

problems caused by the long development cycles of

traditional development models [14]. The term

„extreme‟ comes from taking these commonsense

principles and practices to extreme levels. A

summary of XP terms and practices is shown below

[14]:

 Planning: The programmer estimates the effort

needed for implementation of customer stories

and the customer decides the scope and timing

of releases based on estimates.

 Small/short releases: An application is

developed in a series of small, frequently

updated versions. New versions are released

anywhere from daily to monthly.

 Metaphor: The system is defined by a set of

metaphors between the customer and the

programmers which describes how the system

works.

 Simple Design: The emphasis is on designing

the simplest possible solution that is

implemented and unnecessary complexity and

extra code are removed immediately.

 Refactoring: It involves restructuring the

system by removing duplication, improving

communication, simplifying and adding

flexibility but without changing the

functionality of the program

 Pair programming: All production code is

written by two programmers on one computer.

 Collective ownership: No single person owns or

is responsible for individual code segments

rather anyone can change any part of the code

at any time.

 Continuous Integration: A new piece of code is

integrated with the current system as soon as it

is ready. When integrating, the system is built

again and all tests must pass for the changes to

be accepted.

 40-hour week: No one can work two overtime

weeks in a row. A maximum of 40-hour

working week otherwise it is treated as a

problem.

 On-site customer: Customer must be available

at all times with the development team.

Volume%203,%20Issue%203%20|%20March-April-2018%20
http://www.ijsrcseit.com/

Volume 3, Issue 6, July-August-2018 | http:// ijsrcseit.com

K M. Jyoti et al. Int J S Res CSE & IT. 2018 July-August; 3(6) : 32-37

 36

 Coding Standards: Coding rules exist and are

followed by the programmers so as to bring

consistence and improve communication

among the development team.

Adaptive Software Development (ASD)

Adaptive Software Development (ASD), developed by

James A. Highsmith, offers an agile and adaptive

approach to high-speed and high-change software

projects [25]. It is not possible to plan successfully in

a fast moving and unpredictable business

environment. In ASD, the static plan-design life cycle

is replaced by a dynamic speculate-collaborate-learn

life cycle. ASD focal point is on three non-linear and

overlapping phases [23]:

 Speculate: To define the project mission, make

clear the realization about what is unclear.

 Collaborate: Highlights the importance of

teamwork for developing high change systems

 Learn: This phase stresses the need to admit

and react to mistakes, and that requirements

may well change during development.

Lean Software Development (LSD)

Lean Software Development (LSD) is the application

of lean principles to the craft of software

development. So what is Lean? According to the

National Institute of Standards and Technology

Manufacturing Extensions Partnership‟s Lean

Network, Lean is: “A systematic approach to

identifying and eliminating waste through

continuous improvement, flowing the product at the

pull of the customer in pursuit of perfection.” [26]

“Lean Software Development reduces defects and

cycle times while delivering a steady stream of

incremental business value.” [27]

IX. CONCLUSION AND FUTURE WORK

It‟s a common fact that software plays a very

important role in business and any type of business

are dependent on software. If we go 30 years back

then at that time there was not that much

competitions in business and the organizations were

using their old technology and were fulfilling their

business requirements. During the current situation

due to advancement in the internet field and e-

business the business of majority of the companies

are expanded globally and the those companies are

using very advanced technology due to high

competition between the business companies and

because of that competition the organizations

business requirements are changing at a very fast rate

and it is not possible for the software companies to

use the traditional software model for their software

development. Those companies need such software

development methods that are flexible to

requirements and changed requirements and can

deliver the software product in short possible time

and within budget.

Agile methods have been used by software companies

and the success rate of agile methods is much more

than the traditional methods. I argue that agile

methods are very simple and easy and can complete

the customer requirements easily within time and

budget because agile methods involve customer

during the software develop phases. There is a close

communication between the customer and

developers, and also among the developers (team

members).

X. REFERENCES

[1]. Cong Liu,David Umphress, Heavyweight or

Lightweight: A Process Selection Guide for

Developing Grid Software, ACM-SE ‟08 March

28-29, 2008, Auburn, AL, USA

[2]. Sheetal Sharma, Darothi Sarkar, Divya Gupta,

Agile Processes and Methodologies: A

Conceptual Study, / International Journal on

Computer Science and Engineering (IJCSE),

ISSN: 0975-3397, Vol. 4 No. 05 May 2012

Volume%203,%20Issue%203%20|%20March-April-2018%20
http://www.ijsrcseit.com/

Volume 3, Issue 6, July-August-2018 | http:// ijsrcseit.com

K M. Jyoti et al. Int J S Res CSE & IT. 2018 July-August; 3(6) : 32-37

 37

[3]. Kaushal Pathak, Anju Saha, Review of Agile

Software Development Methodologies,

International Journal of Advanced Research in

Computer Science and Software Engineering,

Volume 3, Issue 2, February 2013, ISSN: 2277

128X

[4]. B. Grady, C. Robert, J. Newkirk, Object

Oriented Analysis and Design with

Applications, 2nd edition, Addison Wesley

Longman, 1998

[5]. P. Kruchten, "What is Rational Unified

Process?", The Rational Edge,

http://www.therationaledge.com/content/jan_0

1/f_rup_pk.html Accessed 2/2/2005

[6]. C. Larman, Agile & Iterative Development: A

Manager‟s Guide. Addison-Wesley, 2004.

[7]. B. Boehm, "A Spiral Model of Software

Development and Enhancement," IEEE

Computer, May 1998.

[8]. W. Cunningham, "Agile Manifesto."

http://www.agilemanifesto.org/, Accessed on

10/7/2004

[9]. S. W. Ambler, "Duking it out", Software

Development, July 2002

[10]. First eWorkshop on Agile Methods, Centre for

Experimental Software Engineering Maryland,

April 8 2002

[11]. J. Highsmith and A. Cockburn, "Agile Software

Development: The Business of Innovation",

IEEE Computer,

http://www.jimhighsmith.com/articles/IEEEArt

icle1Final.pdf Accessed on 10/10/2004

Volume%203,%20Issue%203%20|%20March-April-2018%20
http://www.ijsrcseit.com/

