
CSEIT183612 | Received :  01 July  2018 |  Accepted :  08 July 2018 | July-August-2018 [ 3 (6) : 919-932 ] 

 

International Journal of Scientific Research in Computer Science, Engineering and Information Technology 

© 2018 IJSRCSEIT | Volume 3 | Issue 6 | ISSN : 2456-3307 

 
47 

Color Demosaicking in Digital Image Using Nonlocal Adaptive 

Thresholding and Local Directional Interpolation 
Kr. Nain Yadav 

M.Tech Scholar, Department of Computer Science, NVPEMI, Kanpur, Uttar Pradesh, India 

 

 
ABSTRACT 

 

Single sensor digital color cameras capture only one of the three primary colors at each pixel and a process 

called color demosaicking (CDM) is used to reconstruct the full color images. Most CDM algorithms assume the 

existence of high local spectral redundancy in estimating the missing color samples. However, for images with 

sharp color transitions and high color saturation, such an assumption may be invalid and visually unpleasant 

CDM errors will occur. In this paper we exploit the image non-local redundancy to improve the local color 

reproduction result. First, multiple local directional estimates of a missing color sample are computed and fused 

according to local gradients. Then nonlocal pixels similar to the estimated pixel are searched to enhance the 

local estimate. An adaptive thresholding method rather than the commonly used nonlocal means filtering is 

proposed to improve the local estimate. This allows the final reconstruction to be performed at the structural 

level as opposed to the pixel level. Experimental results demonstrate that the proposed local directional 

interpolation and nonlocal adaptive thresholding (LDI-NAT) method outperforms many state-of-the-art CDM 

methods in reconstructing the edges and reducing color interpolation artifacts, leading to higher visual quality 

of reproduced color images. 

Keywords: Color Demosaicking, Nonlocal, Sparse Representation, Image Interpolation. 

 

I. INTRODUCTION 

 

Single sensor (CCD/CMOS) digital color cameras 

capture images with a color filter array (CFA), such 

as the Bayer pattern CFA [1]. At each pixel, only one 

of the three primary colors (red, green and blue) is 

sampled; the missing color samples are estimated by 

a process called color demosaicking (CDM) to 

reconstruct full color images. The color reproduction 

quality depends on the image contents and the 

employed CDM algorithms [19]. Various CDM 

algorithms [3-18] have been proposed in the past 

decades. The classical second order Laplacian 

correction (SOLC) [3-4] algorithm is one of the 

benchmark CDM schemes due to its simplicity and 

efficiency. The recently developed methods include 

the successive approximation based CDM by Li [9], 

the adaptive homogeneity CDM by Hirakawa et al. 

[10], the directional linear minimum mean square-

error estimation (DLMMSE) based CDM method by 

Zhang et al. [12], the directional filtering and a 

posteriori decision CDM by Menon et al. [13], the 

sparse representation based method by Mairal et al. 

[14], and the nonlocal means based self-similarity 

driven (SSD) method by Buades et al. [15], etc. A 

recent review of CDM methods can be found in [20]. 

 

Most of the existing CDM methods assume high local 

spectral correlations. This assumption may well be 

valid for images such as those in the Kodak dataset 

[2]. The Kodak dataset was not originally released for 

CDM but it has been widely used as a benchmark 
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dataset in evaluating CDM algorithms. Inadvertently, 

the Kodak dataset misled the research of CDM to 

some extent. It was pointed out in [15, 16, 20] that 

images in the Kodfak dataset have much higher 

spectral correlation, lower color saturation and 

smaller chromatic gradients than images in other 

datasets 

 

In this paper, we propose to couple local directional 

interpolation (LDI) with nonlocal enhancement for a 

more effective CDM. The employed CDM strategy is 

very simple: initial local CDM by LDI, followed by a 

nonlocal enhancement process. In the initial CDM, 

only the local spatial-spectral correlation within a 

compact local window is exploited to avoid CDM 

errors caused by high color variations around color 

edges of high saturation. Since directional 

information is crucial for edge preservation, we use 

directional filters to interpolate the missing color 

samples. The obtained directional estimates are then 

fused according to the local directional gradients. 

The results of LDI can be augmented by exploiting 

non-local redundancy to reduce initial CDM errors. 

The similar pixels to the estimated pixel are chosen 

by patch matching (in practice, a relatively large 

local window is used), and the matched pixels are 

used to enhance the initial CDM result. 

 

II. THE PROPOSED COLOR DEMOSAICKING 

ALGORITHM 

 

FLOWCHART 

Figure 1 illustrated the flowchart of the proposed 

CDM algorithm. First, an initial interpolation is 

applied to the green (G) channel by local direction 

interpolation (LDI) and fusion. Second, the nonlocal 

adaptive thresholding (NAT) is applied to enhance 

the interpolated G channel. In the 3rd step, the red 

(R) and blue (B) channels are initially interpolated by 

the help of the reconstructed G channel. Finally, 

NAT is applied to the R and B channels so that the 

whole CDM is completed. 

 
Figure 1. Flowchart of the proposed Color 

Demosaicking (CDM) method. 

 

One key issue in the initial CDM is the use of local 

and directional information. In high saturation areas 

of natural images, the change of colors is abrupt. 

Therefore, if we use too many local neighbors to 

estimate the missing color samples, unexpected errors 

can be introduced and they can be hard to remove in 

the stage of nonlocal enhancement. On the other 

hand, the preservation of edges is crucial to the visual 

quality of reconstructed color images. Since edges 

usually have one or more dominant directions, the 

interpolation should be along, instead of across, the 

edge main directions. 

 
(a)     (b) 

(c) 

Figure 2. (a) A cropped and zoomed full color patch; 

(b) the green and red color difference image of (a);(c) 

the color difference signals along horizontal (dh), 

vertical (dv), 450 diagonal (d45), and 1350 diagonal 
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(d135) directions at the center of color difference 

image (b). 

With the above considerations, we propose an LDI 

scheme for initial CDM (the detailed description of 

LDI is in Section 2.2). Let’s use an example to explain 

why the strategy of LDI is adopted for initial CDM. 

Figure 2a shows a small patch where there are sharp 

color transitions (from red to white) in it. Figure 2b 

shows the green and red color difference image (i.e. 

G-R) of Figure 2a. In Figure 2c, we plot the color 

difference signals (with the origin being the center of 

the patch) along four directions: horizontal (dh), 

vertical (dv), 450 diagonal (d45) and 1350 diagonal 

(d135). Some observations can be made from this 

example. 

 

First, the assumption of smooth color difference used 

in many CDM methods is invalid. Particularly, from 

Figure 2c we see that the color differences outside 

the two-pixel-wide neighborhood are very different 

from the center one. Therefore, using a big local 

window (e.g., bigger than 5×5) to estimate the 

missing color samples can result in unexpected 

errors. Second, the color edge direction information 

is very useful for color interpolation. From Figure 2c 

we see that the color difference along the 1350 

diagonal direction is much smoother than other 

directions, and hence it should contribute more to 

the color estimation. Due to the color down-

sampling in the mosaic CFA pattern, the color 

difference signal G-R along diagonal directions 

cannot be directly calculated. In practice, they are 

estimated as the weighted average of color 

differences in other directions. 

 

LOCAL DIRECTIONAL INTERPOLATION OF 

GREEN CHANNEL 

In various CFA patterns, such as the Bayer pattern 

[1], the sampling frequency of G is higher than that 

of R and B channels. Therefore, the G channel 

preserves much more image structural information 

than the other two color channels. Usually, a better 

reconstruction of G will lead to a better 

reconstruction of R and B. As shown in Fig. 1, we 

will initially interpolate the G channel by using local 

redundancy, and then enhance it by using nonlocal 

redundancy. 

 

The well-known SOLC algorithm [3, 4] is actually a 

directional interpolation method. In SOLC, at each R 

or B position two filtering outputs of G are computed 

along horizontal and vertical directions respectively, 

and then one of them is selected based on the 

gradients in the two directions. However, SOLC has 

two problems. First, it considers only two directions 

in the interpolation. This limits its capability in 

preserving edge structures along other directions. 

Second, SOLC simply selects one of the two 

directions for interpolation, but this will lose much 

useful information in the local area, resulting in 

many interpolation errors. In this section, we 

propose to fuse the directional information for more 

robust color interpolation. 

 
Figure 3. A CFA block. 

 

Since there can be sharp color transitions in highly 

saturated regions, we use a compact local window for 

the initial interpolation. Refer to Fig. 3, considering a 

CFA block and let’s focus on the red pixel R0, where 

the green color is to be estimated. (The missing green 

colors on blue pixels can be similarly interpolated.) 

Intuitively, if we could know the color difference 

between G and R at position R0, denoted by dgr = G0- 

R0, the missing green sample can then be recovered as 

G0= R0+ dgr. Therefore, how to estimate the color 

difference dgr is a key in the interpolation of G. 

 

We compute the color difference along four 

directions: north (n), south (s), west (w) and east (e). 
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Refer to Fig. 3, the four directional estimates,  dgrn ,  

dgrs ,  dgrw  and  dgre , are calculated as follows: 

 
 

The interpolation error of the four directional 

estimates relates to the edge direction and color 

transition at R0. In order to evaluate which estimate 

is better, we calculate the gradients at R0 along the 

four directions. There are many forms to define the 

directional gradients at R0. We have the following 

considerations. First, the gradient should be 

calculated using the pixels from the same channel; 

second, to make the calculation of gradients more 

stable, we could involve neighboring columns/rows 

of the central column/row in calculation; third, the 

central column/row should have higher contribution 

to the gradient than the neighboring columns/rows. 

Based on the above three considerations, we use the 

following formula to calculate the gradients along 

north, south, west and east directions: 

 

NONLOCAL ENHANCEMENT OF G CHANNEL 

By using the method described in Section 2.2, an 

initial estimate of each missing green sample can be 

obtained. Since only the local redundancy in a 

compact local window is exploited, the interpolation 

may not be accurate, especially around object 

boundaries where sharp color or intensity changes 

will occur. Fortunately, in natural images there are 

many similar patterns or structures, while a similar 

structure to the given one may appear far from it. 

Such nonlocal redundancy can be exploited to 

enhance the CDM results. The nonlocal means 

(NLM) technique has been extensively studied and 

effectively used in image/video denoising and 

restoration [21-26], and recently it has also been 

successfully used in CDM [15]. In this section, we use 

the nonlocal redundancy to reduce the initial 

interpolation errors and enhance the color 

reproduction quality of G channel. 

 

1. Nonlocal enhancement by NLM filtering 

One straightforward way for the nonlocal 

enhancement of G channel is to apply NLM filtering 

to the interpolated green sample  
  

, as in many NLM 

based denoising works [21-25]. To this end, we 

search for similar pixels (can be either original green 

samples or interpolated green samples) to the  in the 

recovered G image. The searching can be performed 

in the whole image; however, given G0 this is 

computationally prohibitive and is not necessary. In 

practice, we search for similar pixels to  
  

  in a large 

enough window (e.g. a 31×31 window), denoted by  , 

centered on it. The patch based G0 method can be 

used to determine the similarity between  
  

 and 

other pixels in  . Denote by P0 the s×s patch centered 

on   
  

, and by Pi the s×s patch centered on a green 

pixel Gi in  . The l1-norm distance between P0 and Pi 

is computed as 

 
For the convenience of expression, we denote by z0 

the given pixel  
  

 a , by zn, n=1,…,N-1, the 

searched similar pixels to   
  

 , and by dn the 

associated distance of zn. The nonlocal enhancement 

by NLM filtering, denoted by xˆ0 , is computed as 

the weighted average of zn: 

output of G0 

 
where the weights wn are set as 

 
 

with C = ∑nN=−01 exp( −dn σ) being the normalization 

factor to make the sum of wn  be 1. In Eq. (2-9), 

parameter σ controls the decay rate of weight wn 

w.r.t. distance dn. In the literature of image denoising, 

σ is usually preset according to the standard deviation 

of the noise in the image. In the SSD algorithm for 
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CDM [15], a coarse-to-fine strategy was used. The 

nonlocal average process is iterated three times, and 

the parameter σ is set smaller and smaller in the 

three iterations. 

 

2 Nonlocal enhancements by NAT 

The NLM filtering based nonlocal enhancement of  

 
  

 is actually the weighted average of samples z0, 

z1, …, zN-1. Although it can suppress many 

interpolation errors generated in the initial CDM and 

lead to much better color reproduction than many 

existing CDM algorithms (refer to Section 3.2 please), 

it may also smooth the edges and some bad color 

artifacts around object boundaries can still survive. 

 

Nonetheless, in NLM the local neighboring pixels to  

 
  

  in the patch P0, which all together form the local 

pattern (i.e. structure) on   
  

, are only used to 

determine the weights wn for averaging. Actually  P0  

and the similar patches Pi  to it also specify the 

variations of the local pattern on  
  

 . This  
  

 

information is not efficiently exploited in NLM 

weighting. To more effectively exploit the nonlocal 

redundancy, we propose a nonlocal adaptive 

thresholding (NAT) scheme in this section. 

 

3. Initial Interpolation of R and B Channels 

With the non-locally enhanced G channel, we first 

compute the initial estimates of R and B channels by 

exploiting the local spatial-spectral correlation, and 

then enhance them by nonlocal redundancy. Since 

the interpolations of R and B channels are symmetric, 

in the following we only discuss the reconstruction of 

B. 

We interpolate the missing B samples by using a two-

step strategy. First we interpolate the B samples at 

the R positions, and then with these interpolated B 

samples, all the other B samples at the G positions can 

be interpolated. Refer to Fig. 3, suppose we are to 

interpolate the missing sample B0 at R0. Note that all 

the G samples have been recovered and are available 

now, and we can estimate the color differences 

between B and G along the four diagonal directions 

at R0 as: 

 
where the superscripts “nw”, “ne”, “se” and “sw” 

represent the north-western, north-east, south-east 

and south-western directions, respectively. 

The four directional estimates are weighted for a 

more robust estimate. To determine the weights, the 

gradients along the four directions are calculated as 

follows: 

   (2-15) 

where ε is a small positive number. Like in Eq. (2-3) 

and Eq. (2-4), the four weights are set as 

(2-16) 

Where Then the final blue 

and green color difference at position R0 is estimated 

by and the missing 

blue component at R0 is estimated as  

 

4 Nonlocal Enhancements of R and B Channels 

Once the R and B channels are interpolated with the 

help of nonlocally enhanced G channel, they can 

then be enhanced by exploiting nonlocal 

redundancies in R and B channels respectively. The 

process is the same as that for the G channel. For 

each interpolated red (blue) sample 
 
  

( B0 ), we 

search for similar pixels to it in a large window 

centered on it. The N most similar pixels to  
  

( B0 ), 
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including itself, are used to enhance it via NLM or 

NAT. 

III. EXPERIMENTAL RESULTS 

 

1. THE MCMASTER DATASET 

The Kodak image dataset [2] is widely used as a 

standard dataset in CDM and many other color 

image processing fields. The Kodak dataset contains 

24 full color images, whose spatial size is 768×512. It 

is said that these images were originally captured by 

film and then digitized by scanner. However, in 

recent years it has been noticed that the statistics of 

Kodak images are very different from other natural 

images [15, 16, 20], e.g., the images in the McMaster 

dataset to be introduced. The images in Kodak 

dataset look smooth and less saturated, which makes 

them less representative for the digital color images 

captured by the current digital cameras and hence 

less representative for applications such as CDM. 

Specifically, the Kodak images have very high 

spectral correlation, are smooth in chromatic 

gradient and have low saturation (refer to Table 1 

please). It is doubted that these images were post-

processed, and they are not suitable for evaluating 

CDM algorithms. 

 

Table 1. Statistics of the Kodak and the McMaster 

datasets. 

Datasets Kodak McMaster 

Mean 

Spectral G and R 0.8712 0.7445 

Correlati

on G and B 0.9050 0.7114 

Mean Saturation 15.6 45.81 

Mean Chromatic 

Gradient 1.78 4.54 

In this study, we use a new color image dataset, 

namely the McMaster dataset, for the evaluation of 

CDM algorithms. This dataset was established in a 

project of developing new CDM methods by 

McMaster University, Canada, in collaboration with 

some industry partners. It has 8 high resolution (size: 

2310×1814) color images that were originally 

captured by Kodak film and then digitized. The 

scenes of the 8 images are shown in Fig. 4. Since 

these images have a big size, we crop 18 sub-images 

(size: 500×500) from them to evaluate the CDM 

methods. Fig. 5 shows the cropped 18 sub-images. In 

Table 1 we compare the mean spectral correlation, 

mean chromatic gradient and mean saturation2 of the 

images in the two datasets. We see that the spectral 

correlation of the Kodak images is obviously higher 

than that of the McMaster dataset. The McMaster 

images are more saturated and there are many sharp 

structures with abrupt color transitions in them. 

Many CDM methods use the Kodak dataset as the 

target images in algorithm development and testing, 

and they assume that the color differences change 

smoothly. Though this assumption holds well for the 

Kodak dataset, we can seefrom Table 1 that it may 

not hold for the images in the McMaster and the 

source code of the proposed LDI-NLM and LDI-NAT 

dataset. The cropped 18 sub-images algorithms can 

be downloaded at 

 
Figure 4. Scenes of the eight test images in McMaster 

dataset. 

 
Figure 5. Cropped McMaster sub-images (500×500) 

used in the experiments. From top to bottom and left 
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to right, these sub-images are labeled as 1 to 18. 

 

3.2. CDM RESULTS 

In our implementation of LDI-NLM, 25 similar 

patches to the given patch (patch size: 5×5) are 

searched in a 31×31 local window. (Please note that 

based on our experiments, using more similar patches 

in NLM filtering will not improve the final CDM 

performance.) The parameter σ (refer to Eq. (2-9)) in 

the NLM filtering is set as 2.5. In our implementation 

of LDI-NAT, 100 similar patches to the given patch 

(patch size: 5×5) are searched in a 31×31 window. 

The threshold used in Eq. (2-13) is set as t=0.03×gY, 

where gY is the average gradient magnitude of the 

similar patches. 

 

It is well-known that PSNR is not a good indicator of 

CDM quality because the CDM errors mainly occur 

around the (color) edges, which account only a small 

portion of the image pixels. In [15], the Zipper Effect 

Ratio (ZER) was used to evaluate the color edge 

preservation performance of CDM. Although this 

metric cannot perfectly reflect the CDM quality, it 

works better than PSNR in evaluating the CDM 

performance. Table 4 shows the ZER measures of the 

seven competing methods. Fig. 7 presents graphically 

the average ZER results by various methods on the 

McMaster dataset. We see that LDI-NLM, SSD and 

LDI-NAT achieve much lower ZER values than other 

methods. Although SOLC and DLMMSE have similar 

PSNR results to SSD, their ZER measures are much 

worse than SSD. This also validates that PSNR is not a 

good metric to measure image edge preservation. 

Note that LDI-NLM has lower ZER values than LDI-

NAT. However, LDI-NAT actually has much better 

edge preservation than LDI-NLM. This is because 

LDI-NLM results in smooth color edges, while the 

ZER metric favors smooth images. Nonetheless, how 

to define a good CDM quality metric is a very 

difficult problem and this is beyond the discussion of 

this paper. 

 

 

 

IV. CONCLUSION 

 

The proposed LDI-NAT algorithm was tested on the 

McMaster dataset in comparison with state-of-the-

art CDM methods. The experimental results showed 

that LDI-NAT leads to visually much better 

demosaicked images, reducing significantly the 

unpleasing zipper effects and false colors that often 

appear in highly saturated areas. 
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Table 3. PSNR (dB) results by different CDM methods on the McMaster dataset. 

Methods SOLC [3] 

AHD 

[10] SA [9] 

DLMMSE 

[12] SSD [15] LDI-NLM LDI-NAT  

1 

R 28.26 26.02 23.53 26.94 27.28 28.81 29.29 

G 31.22 29.82 25.17 30.63 30.68 32.31 32.67 

B 26.34 24.04 22.05 24.82 25.12 26.47 26.71 

2 

R 33.68 32.47 31.63 33.30 33.61 34.66 35.02 

G 37.62 37.20 34.00 37.66 37.81 39.01 39.08 

B 32.11 31.26 30.74 31.86 32.01 32.79 32.92 

3 

R 30.64 31.10 31.47 32.60 32.81 33.41 33.05 

G 33.73 33.49 32.75 35.28 35.05 35.50 35.51 

B 28.60 29.67 29.80 30.70 30.93 30.99 30.31 

4 

R 32.80 33.76 34.59 34.70 36.36 37.41 36.25 

G 37.16 35.66 34.05 36.99 38.98 39.01 40.33 

B 30.89 31.48 32.19 32.07 33.49 34.02 33.30 

5 

R 33.61 29.52 28.60 30.38 31.10 34.50 35.05 

G 36.28 34.73 30.97 35.11 35.43 37.67 38.15 

B 30.47 28.78 28.08 29.41 29.48 31.02 31.16 

6 

R 37.14 33.92 32.23 34.98 36.09 38.59 39.40 

G 40.30 37.72 32.50 38.61 38.85 41.70 43.42 

B 34.00 29.96 29.14 31.15 31.72 34.21 34.97 

Average G 38.11 37.10 34.63 38.10 38.08 39.46 39.79 

 B 33.41 32.30 31.87 33.15 33.47 34.33 34.38 

 

Table 4. Zipper Effect Ratio (ZER) by different CDM methods on the McMaster dataset. 

Methods SOLC [3] AHD 

[10] 

SA [9] DLMMSE 

[12] 

SSD [15] LDI-

NLM 

LDI-NAT 

1 0.2059 0.1678 0.4348 0.2021 0.0996 0.0748 0.1082 

2 0.0939 0.1225 0.1673 0.1249 0.0753 0.0486 0.0682 

3 0.1659 0.2336 0.4357 0.2179 0.1044 0.0815 0.1044 

4 0.3475 0.3952 0.7680 0.5287 0.0915 0.0930 0.1468 

5 0.0996 0.1130 0.1831 0.1144 0.0629 0.0477 0.0591 

6 0.0987 0.120

6 

0.2121 0.1306 0.0563 0.047

7 

0.0477 

average 0.1508 0.194

9 

0.3107 0.2001 0.0883 0.063

3 

0.0891 
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Figure 6. Graphical presentation of the average PSNR by different methods on the McMaster dataset. 

 
Figure 7. Graphical presentation of the average ZER by different methods on the McMaster dataset. 

 

 
(a) (b) 

 
(b) (d) 

 
(e)                                               (f) 

 
(g)                                             (h) 

Figure 8. (a) Original image 1 and demosaicked images by (b) SOLC [3]; (c) AHD [10]; (d) SA [9]; (e) DLMMSE [12]; 

(f) SSD [15]; (g) the proposed LDI-NLM and (h) LDI-NAT. 
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