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ABSTRACT 
 

We present a new image editing method,particularly effective for sharpening major edges by increasing the 

steepness of transition while eliminating a manageable degree of low-amplitude structures. The seemingly 

contradictive effect is achieved in an optimization framework making use of L0 gradient minimization,which 

can globally control how many non-zero gradients are resulted in to approximate prominent structure in a 

sparsity-control manner. Unlike other edge-preserving smoothing approaches,our method does not depend on 

local features,but instead globally locates important edges. It,as a fundamental tool,finds many applications and 

is particularly beneficial to edge extraction,clipart JPEG artifact removal,and non-photorealistic effect 

generation. 

Keywords: L0 Smoothing, Edge Enhancement, Extraction Image Abstraction, Layer-Based Contrast 

Manipulation Edge Adjustment, Detail Magnification, Tone Mapping  

 

I. INTRODUCTION 

 

Photos comprise rich and well-structured visual 

information. In human visual perception, edges are 

effective and expressive stimulation, vital for neural 

interpretation to make the best sense of the scene. In 

manipulating and understanding pictures, high-level 

inference with regard to salient structures was 

intensively attended to. Research following this line 

embodies generality and usefulness in a wide range 

of applications, including image recognition, 

segmentation, object classification, and many other 

photo editing and non-photorealistic rendering tasks. 

 

Figure 1. L0 smoothing accomplished by global small-

magnitude gradient removal. Our method suppresses 

low-amplitude details. Mean-while it globally retains 

and sharpens salient edges. Even the high-contrast 

thin edges on the tower are preserved. 

 

We in this thesis present a new editing tool, greatly 

helpful for characterizing and enhancing 

fundamental image constituents, i.e., salient edges, 

and in the meantime for diminishing insignificant 

details. Our method relates in spirit to edge-

preserving smoothing [Tomasi and Manduchi 1998; 

Durand and Dorsey 2002; Paris and Durand 2006; 

Farbman et al. 2008; Subr et al. 2009; Kass and 

Solomon 2010] that aims to retain primary color 

change, and yet differs from them in essence in focus 

and in mechanism. Our objective is to globally 

maintain and possibly enhance the most prominent 

set of edges by increasing steepness of transition 

while not affecting the overall acutance. It enables 

faithful principal-structure representation. 

    
(a) Abstraction (b) Pencil Sketch Rendering 

Figure 2. Our L0 smoothing results avail non-

photorealistic effect generation. 
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Algorithmically, we propose a sparse gradient 

counting scheme in an optimization framework. The 

main contribution is a new strategy to confine the 

discrete number of intensity changes among neigh-

boring pixels, which links mathematically to the L0 

norm for information sparsity pursuit. This idea also 

leads to an unconventional global optimization 

procedure involving a discrete metric, whose solution 

enables diversified edge manipulation according to 

saliency. The qualitative effect of our method is to 

thin salient edges, which makes them easier to be 

detected and more visually distinct. Different from 

color quantization and segmentation, our enhanced 

edges are generally in line with the original ones. 

Even small-resolution objects and thin edges can be 

faithfully maintained if they are structurally 

conspicuous, as shown in Figure  1. 

The framework is general and finds several 

applications. We apply it to compression-artifact 

degraded clipart recovery. High quality results can be 

obtained in our extensive experiments. Our method 

can also profit edge extraction, a fundamentally 

important operator, by effectively removing part of 

noise, unimportant details, and even of slight 

blurriness, making the results immediately usable in 

image abstraction and pencil sketch production, as 

shown in Figure  2. 

 
(a) BLF [1998] (b) LCIS [1999] (c) WLS [2008]

 
(d) TV [1992]  (e) Ours 

Figure 2. Signal obtained from an image scanline, 

containing both details and sharp edges. (a) Result of 

bilateral filtering. (b) Result of anisotropic diffusion 

used in the LCIS system. (c) Result of WLS 

optimization. (d) Result of TV smoothing. (e) Our L0 

smoothing results. 

In traditional layer decomposition, with an additional 

step to avoid structure over-enhancement, our 

method is applicable to detail enhancement based on 

separating layers, and possibly to HDR tone mapping 

after parameter tuning. We show several examples 

along with discussion of limitations that our method 

might cause over-sharpening for large illumination 

variation spanning dozens of pixels when strong 

smoothing is applied. 

 

II. BACKGROUND AND MOTIVATION 

 

Edge-preserving smoothing can be achieved by local 

filtering, including bilateral filtering [Tomasi and 

Manduchi 1998], its accelerated versions [Paris and 

Durand 2006; Weiss 2006; 

 

Chen et al. 2007] and relatives [Choudhury and 

Tumblin 2003; Fattal 2009; Baek and Jacobs 2010; 

Kass and Solomon 2010]. Robust optimization-based 

approaches have also been advocated, represented by 

the weighted least square optimization [Farbman et 

al. 2008] and envelope extraction [Subr et al. 2009]. 

We discuss their properties using the 1D signal 

example (a scanline of a natural image) shown in 

Figure  2. 

 

Bilateral filtering is widely used for its simplicity and 

effectiveness in removing noise-like structures. This 

method trades off between details flattening and 

sharp edge preservation, as discussed in [Farbman et 

al. 2008]. Its result is shown in Figure  2(a). 

Anisotropic diffusion [Perona and Malik 1990; Black 

et al. 1998] is also designed for suppressing noise 

while preserving important structures, which 

involves an edge-stopping function to prevent 

smoothing from crossing strong edges. The change of 

structures accumulates and the output would 

converge to a constant-value image unless being 

stopped halfway. One result is shown in Figure  2(b). 
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Farbman et al. [2008] proposed a robust method with 

the weighted least square (WLS) measure. The 

optimization framework with edge preserving 

regularization is more flexible compared with local 

filtering. Its result is shown in Figure  2(c). Another 

type of edge preserving regularization is total 

variation (TV) [Rudin et al. 1992], which is widely 

used to remove noise from images. It however also 

penalizes large gradient magnitudes, possibly 

influencing contrast during smoothing. One example 

is shown in Figure  2(d). 

 

Subr et al. [2009] considered local signal extremes 

and used edge-aware interpolation [Levin et al. 2004; 

Lischinski et al. 2006] to compute envelopes. A 

smoothed mean layer is extracted by aver-aging the 

envelopes, originated from a 1D Hilbert-Huang 

transform (HHT). The method aims to remove small 

scale oscillations. Contrarily, our method targets 

globally preserving salient structures, even if they are 

small in resolution. 

 

Kass and Soloman [2010] used smoothed histogram to 

accelerate local filtering and proposed the mode-

based filters. Most recently, 

 
Figure 3. Correspondence between k and 1/λ in Eqs. 

(2) and (3). The plot is obtained by trying different λ 

values in Eq. (3) and by finding the corresponding k 

in the results after our optimization. 

 

1D Smoothing  

We enhance highest-contrast edges by confining the 

number of non-zero gradients, while smoothing is 

achieved in a global manner. To begin with, we 

denote the input discrete signal by g and its smoothed 

result by f . Our method counts amplitude changes 

discretely, written as 

c(f) = #{p | | fp − fp+1| ≠ 0}, (1) 

 

where p and p + 1 index neighboring samples (or 

pixels). | fp − fp+1| is a gradient w.r.t. p in the form of 

forward difference. #{} is the counting operator, 

outputting the number of p that satisfies | fp − fp+1| ≠0, 

that is, the L0 norm of gradient. c(f) does not count on 

gradient magnitude, and thus would not be affected if 

an edge only alters its contrast. This discrete counting 

function is central to our method. 

2D Formulation  

In 2D image representation, we denote by I the input 

image and by S the computed result. The gradient ∇Sp 

= (∂xSp, ∂ySp)T for each pixel p is calculated as color 

difference between neighboring pixels along the x 

and y directions. Our gradient measure is expressed 

as 

C (S) = # { p | |∂xSp| + |∂ySp| ≠0 } (4) 

It counts p whose magnitude |∂xSp| + |∂ySp| is not zero. 

With this definition, S is estimated by solving 

 
In practice, for color images, the gradient magnitude 

|∂ Sp| is defined as the sum of gradient magnitudes in 

rgb. The term ∑(S − I)2 constrains image structure 

similarity. 

III. OUR METHODOLOGY 

 

Solver 

Eq. (5) involves a discrete counting metric. It is 

difficult to solve because the two terms model 

respectively the pixel-wise difference and global 

discontinuity statistically. Traditional gradient decent 

or other discrete optimization methods are not 

usable. 

 

We adopt a special alternating optimization strategy 

with half-quadratic splitting, based on the idea of 

introducing auxiliary variables to expand the original 

terms and update them iteratively. Wang et al. [2008] 

used the splitting scheme to solve a different convex 
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problem. Our algorithm, due to the discrete nature, 

contains new subproblems. Both of them find their 

closed-form solutions. It is notable that the original 

L0-norm regularized optimization problem is known 

as computationally intractable. Our solver is thus 

only an approximation, making the problem easier to 

tackle and upholding the property to maintain and 

enhance salient structures. 

    

  
Figure 5. Noisy image created by Farbman et al. 

[2008]. (a) Color visualized noisy input. (b) Result of 

Subr et al. [2009]. (c) Bi-lateral filtering (BLF) result 

(σs = 12, σr = 0.45) [Tomasi and Manduchi 1998]. (d) 

Result of WLS optimization (α = 1.8, λ = 0.35) 

[Farbman et al. 2008]. (e) Our result. 

 

We introduce auxiliary variables hp and vp, 

corresponding to ∂xSp and ∂ySp respectively, and 

rewrite the objective function as 

    (6) 

where C(h, v) = # { p |hp| + |vp| ≠ 0 } and β is an 

automatically adapting parameter to control the 

similarity between variables (h, v) and their 

corresponding gradients. Eq. (6) approaches (5) when 

β is large enough. Eq. (6) is solved through 

alternatively minimizing (h, v) and S. In each pass, 

one set of the variables are fixed with values obtained 

from the previous iteration. 

 

Subproblems 

Subproblem 1: computing S The S estimation 

subproblem corresponds to minimizing 

  ∑                (               

             )     (7) 

by omitting the terms not involving S in Eq. (6). The 

function is quadratic and thus has a global minimum 

even by gradient decent. Alternatively, we 

diagonalize derivative operators after Fast Fourier 

Transform (FFT) for speedup. This yields solution 

 
where F is the FFT operator and F()* denotes the 

complex conjugate. F(1) is the Fourier Transform of 

the delta function. The plus, multiplication, and 

division are all component-wise operators. 

Compared to minimizing Eq. (7) directly in the 

image space, which involves very-large-matrix 

inversion, computation in the Fourier domain is 

much faster due to the simple component-wise 

division. 

 

Subproblem 2: computing (h, v) The objective 

function for (h, v) 

 
where C(h, v) returns the number of non-zero 

elements in |h| + |v|. This apparently sophisticated 

subproblem can actually be solved quickly because 

the energy (9) can be spatially decomposed where 

each element hp and vp is estimated individually. 

This is the main benefit of our splitting scheme, 

which makes the altered problem empirically 

solvable. Eq. (9) is accordingly decomposed to 

 
Algorithm 1 L0 Gradient Minimization 

Algorithm 1 L0 Gradient Minimization 

Input: image I, smoothing weight λ , parameters β0, 

βmax, and rate κ 

Initialization: S ← I, β ← β0, i 

← 0 repeat 

With S(i), solve for h(pi) and v(pi) in Eq. (12). 

With h(i) and v(i), solver for S(i+1) with Eq. (8). 

β ← κβ , i + +. 

until β ≥ βmax 
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Output: result image S 

 

where H(|hp|+ |vp |) is a binary function returning 1 if 

|hp|+ |vp| ≠ 0 and 0 otherwise. Each single term w.r.t. 

pixel p in Eq. (10) is 

Ep = (hp − ∂xSp)2 + (vp − ∂ySp)2 + λ/β H(|hp|+ |vp|) ,  

    (11) 

which reaches its minimum Ep* under the condition 

 
Proof. 

1) When λ /β ≥ (∂xSp)2 + (∂ySp)2, non- 

2) zero (hp, vp) yields 

Ep((hp, vp) ≠ 0(, 0)) = (hp − ∂xSp)2 + (vp − ∂ySp)2 + λ /β ,  

≥ λ /β ,  

≥ (∂xSp)2 + (∂ySp)2.   

    (13) 

Note that (hp, vp) = (0, 0) leads to

   

Ep((hp, vp) = (0, 0)) = (∂xSp)2 + 

(∂ySp)2.     (14) 

Comparing  Eqs. (13) and (14), 

the minimum energy  

Ep* = (∂xSp)2 + (∂ySp)2 is produced 

when (hp, vp) = (0, 0). 

2) When (∂xSp)2 + (∂ySp)2 > λ /β and 

(hp, vp) = (0, 0), Eq. (14) 

Still holds. But Ep((hp, vp) ≠ 0(, 0)) 

has its minimum value 

 

λ /β when (hp, vp) = (∂xSp, ∂ySp). Comparing these two 

values, the minimum energy Ep*= λ /β is produced 

when (hp, vp) =(∂xSp, ∂ySp). 

 

With the above derivation, in this step, we compute 

for each pixel p the minimum energy Ep*. Summing 

all of them, i.e., calculating ∑p Ep*, yields the global 

optimum for Eq. (10). 

 

Our alternating minimization algorithm is sketched 

in Alg. 1. Parameter β is automatically adapted in 

iterations starting from a small value β0, it is 

multiplied by κ each time. This scheme is effective 

to speed up convergence [Wang et al. 2008]. In our 

method, Image Smoothing via L0 Gradient 

Minimization 

 
Figure 6. Smoothing results and comparison (best 

viewed in their original resolution). 

 
Figure 7. Close-ups of the results with smoothing 

strength gradually increasing from top to bottom. (a) 

Bilateral filtering (BLF) results. (b) Results of the 

WLS method. (c) Results of total variation smoothing. 

(d) Our results. 

 

β0 and βmax have fixed values 2λ and 1E5 respectively. 

κ that is set to 2 is a good balance between efficiency 

and performance. We use this value to generate most 

of our results. Only in Figs. 6 and 11, we set it to 1.05 

to allow more iteration in optimization, leading to 

higher-quality results. The critical parameter λ is 

allowed to be adjusted to effectively control the level 

of structure coarseness. 

 

20-30 iterations are generally performed in our 

algorithm. Most computation is spent on FFT in Eq. 

(8) and on pixel-wise algebraic operations in Eq. (10). 

Overall, it takes 3 seconds to process a single-channel 

600 × 400 image on an Intel Core2 Duo CPU@2.13G 

with our Matlab implementation. The code is 
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publicly available in the project website. 

 

Comparison to quantization and segmentation  

To clarify the difference, we use the example shown 

in Figure  9, where the natural image contains a very 

small amount of noise, common in photos. Color 

quantization can neither suppress noise nor 

accurately remove details, yielding incorrect 

boundaries, as shown in Figure  9(b). Image 

segmentation seeks proper spatial partitioning. This 

set of methods are widely known as difficult to 

maintain fine edges, infective algorithm to achieve 

sub-problem global optimization are central to the 

high practicality. 

 

Difference with total variation and other regularizers 

Continuous Lp norm with p = 1 was enforced in total 

variation (TV) smoothing to suppress noise. In this 

framework, strong smoothing inevitably curtails 

originally salient edges to penalize their magnitudes. 

In our method, large gradient magnitudes are allowed 

by nature with our discrete counting measure. 

 

Lp norm regularization with 0.5 ≤ p ≤ 1 was also 

employed in [Levin et al. 2007] to model the sparsity 

of natural image gradients. The success of the WLS 

optimization attributes in part to the Lp norm in the 

Iterative Reweighed Least Square (IRLS) framework. 

 

Mathematically, Lp norm satisfies positive scalability 

constraint , where a is a scalar. 

It yields  if |a| > 1, which 

implies that these norms still impose large penalties 

on salient gradients. On the contrary, the L0 norm in 

Eq. (1) satisfies #{|x| > 0} = #{|ax| > 0} for any non-zero 

a, and thus does not comply with the positive 

scalability constraint. This major difference leads to 

new smoothing behavior. 

 

Selectively penalizing image gradients is also related 

to the Weak Membrane model of Blake and 

Zisserman [1987], which explicitly represents 

discontinuity and adjusts gradients only in 

continuous regions. Our method is dissimilar in 

formulation and in solver. 

 

A natural image example is comparison with other 

state-of-the-art approaches. More are put in our 

project website, produced with different parameters. 

Close-ups are obtained by varying smoothing 

strength. Our results contain globally the most salient 

structures in different degrees. 

 

Comparison to local histogram-mode filtering The 

method of Kass and Solomon [2010] is not based on 

smoothing neighboring pixels, and thus can sharpen 

edges while reducing details. We show in Figure  10 a 

close-up comparison. The edges in our result (b) are 

in line with the originally salient ones due to the 

global optimization. 

 

IV.  APPLICATIONS 

 

Our method avails several applications due to its 

fundamentality and the special properties in 

processing natural images. We apply it to edge 

enhancement and extraction, non-photorealistic 

rendering, clipart restoration, and layer 

decomposition based manipulation. Following are 

some applications: 

1. Edge Enhancement and Extraction  

2. Image Abstraction and Pencil Sketching  

3. Clip-Art Compression Artifact Removal  

4. Layer-Based Contrast Manipulation  

5. Edge Adjustment 

6. Detail Magnification  

7. Tone Mapping  

 

V. DISCUSSION AND LIMITATIONS 

 

We have presented a well-principled and powerful 

smoothing method based on the mechanism of 
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discretely counting spatial changes, which can 

remove low-amplitude structures and globally 

preserve and enhance salient edges, even if they are 

boundaries of very narrow objects. 

 

As our system does not use spatial filtering or 

averaging, it can be regarded as complementary to 

previous local approaches. Interestingly, when 

combined with local filtering, our method can 

produce novel effects. Only bilaterally filtering the 

image contrarily blurs main boundaries under strong 

smoothing. We propose first applying bilateral 

filtering, which lowers the amplitudes of noise-like 

structures more than those of long coherent edges, 

followed by our method to globally sharpen 

prominent edges. Result in (d) only contains large-

scale salient edges, profiting main structure 

extraction and understanding. To remove textures, 

our method may produce an over-sharpened result, 

as exemplified in (b). This result, however, can still 

be used in detail magnification. After edge 

adjustment as described in Sec. 4.4 and taking the 

result as the base layer, we magnify only details. The 

aforementioned parameter tuning for tone mapping is 

another limitation. 
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