
 CSEIT183645 | Received : 10 July 2018 | Accepted : 24 July 2018 | July-August-2018 [3 (6) : 247-251]

International Journal of Scientific Research in Computer Science, Engineering and Information Technology

© 2018 IJSRCSEIT | Volume 3 | Issue 6 | ISSN : 2456-3307

247

Keyword Search on Hyper Graph Data Bases
D. Pavani

M.Tech Scholar, Computer Science and Engineering, JNTUA College of Engineering, Ananthapuramu, Andhra

Pradesh, India

ABSTRACT

Archiving graph data is necessary in many applications. This graph data is handled with graph databases. They

also consist of temporal graph. The temporal graph consists of temporal data. Temporal data refers to data,

where it changes over time. Querying on temporal graphs the existing approaches are insufficient as they

consume more time. This paper supports keyword search on temporal graphs efficiently by using hyper graphs.

The main advantage of Hyper Graphs over Temporal graphs is keyword evolution time can be reduced

drastically.

Keywords : Temporal Graphs, Hyper Graphs, Keyword Search.

I. INTRODUCTION

Question recovery frameworks are executed at

different area particular Search Engine (e.g. DBLP,

SNAP) to bring proposed results [1].User utilizes

catchphrase look framework over picked information

sets. A client creates a watchword question, submits

it to the framework, and recovers pertinent answers.

Web indexes utilizes an approach that may enable it

to recognize how important the outcomes it

presentations to searchers may really be, and how

likely those outcomes are to demonstrate an

assortment of results when a searcher utilizes an

inquiry term that may cover a scope of themes in

future. Age old earlier methodologies utilized Human

Reviewers being one alternative for keeping an eye

on the pertinence of indexed lists by physically

screening the outcomes for each inquiry. Sadly,

overlooking or not completely misusing the time

measurement can be adverse for a huge group of

inquiries for which we ought to consider the topical

pertinence as well as the time angle as well. Such sort

of questions can be prepared and gotten with the

assistance of a RDBMS (SQL) [2] based frameworks

effectively and productively, however is

exceptionally intricate doing likewise on Graph

Databases(GDB's).Graph databases resemble the up

and coming age of social databases, yet with top of

the line bolster for "connections", or those verifiable

associations showed by means of outside keys in the

customary social databases. Every hub (substance or

quality) in the chart database demonstrate

straightforwardly and physically contains a rundown

of relationship-records that speak to its connections

to different hubs. These relationship records are

sorted out by sort and course and may hold extra

traits. At whatever point you run what might as well

be called a JOIN activity, the database just uses this

rundown and has guide access to the associated hubs,

wiping out the requirement for a costly

pursuit/coordinate calculation. Anyway the time

affectability measures are confounded in GDB's, so

we require a superior technique to help time cut

questions over GDB's.

II. PROBLEM DEFINITION

2.1 Background of Keyword Search on Graphs:

There is existing work on catchphrase look on non-

temporal charts. Every hub in the diagram has a

name, speaking to its tag or esteem. Hubs and edges

http://ijsrcseit.com/

Volume 3, Issue 6, July-August-2018 | http:// ijsrcseit.com

D. Pavani et al. Int J S Res CSE & IT. 2018 July-August; 3(6) : 919-932

 248

in the chart may have weights. A watchword in the

inquiry can coordinate words in the names of at least

one hub in the information. A response to an inquiry

is a sub tree of the information diagram that contains

matches to all inquiry watchwords. Sub trees with

littler size are viewed as better outcomes and

positioned higher. We embrace a comparative model

in this paper, aside from that hubs are additionally

connected with time interims, and the pursuit

grammar is improved with worldly provisions, as

characterized in the accompanying.

2.2 Data Model:

We define the temporal gr5aph model in a similar

way as the temporal XML model used [3]. The data is

modelled as a directed graph, where each node n and

edge e is annotated.

2.3 Query Syntax

We bolster stretched out watchword inquiries to

transient diagrams, where a clients can issue an

inquiry with discretionary worldly predicates and

fleeting positioning capacities as characterized

underneath.

 The query syntax for searching temporal graph

is defined as:

_ <Q> ::= <KEYWORD>+ <PRED>* <RF>*

Where “<KEYWORD>+” represents one or more

keywords, each of which may match the labels of

data nodes, “<PRED>*”represents zero or more

temporal predicates, and “<RF>*” represents zero or

more ranking factors.

Table 1. Queries corresponding to the questions Q1-

Q3

Q1: “Mary, John”,-ascending order of start time.

Q2: “Mike, friend”, - descending order of

duration.

Q3: “Microsoft, employee”, result time precedes

2016.

We support the following temporal predicates:

_ <PRED> ::= RESULT TIME

– {PRECEDES / FOLLOWS} tx

– MEETS tx

– OVERLAPS [tx; ty]

– {CONTAINS / CONTAINED BY} [tx; ty]

"Result time" alludes to the time when the outcome

exists (Definition 2.2). While different predicates are

plain as day, predicate "meets tx" implies that the

outcome is substantial in tx, and is either invalid in

whenever moment before tx, or invalid in whenever

moment after tx. Predicates can be consolidated

utilizing AND, OR and NOT.

We bolster the accompanying positioning

components:

_ <RF>::= RANK BY

– DESCENDING ORDER OF {RELEVANCE

/RESULT

END TIME /DURATION}

– ASCENDING ORDER OF RESULT START TIME

The linguistic structure of worldly predicates takes

after the punctuation of TSQL2, the fleeting

expansion to the SQL dialect standard. It can express

any connections between the outcome time and a

period moment tx or a period interim [tx; ty. For each

match of symmetric connections, we just show one of

them in the figure. For instance, Table 1 indicates

Q1-Q3 under this linguistic structure. We take after

best in class ways to deal with characterize

importance as the weighted outcome tree estimate,

the littler, the better. To encourage clients to express

fleeting questions, the framework can furnish a

graphical interface with drop-down menus that

rundown choices for client choice.

III. EXISTING SYSTEM

The existing query model considers the following

aspects.

Volume%203,%20Issue%203%20|%20March-April-2018%20
http://www.ijsrcseit.com/

Volume 3, Issue 6, July-August-2018 | http:// ijsrcseit.com

D. Pavani et al. Int J S Res CSE & IT. 2018 July-August; 3(6) : 919-932

 249

If the relevant time period for a time-sensitive query

is unspecified, several query processing approaches

are possible. One option is to consequently

recommend, in light of the inquiry terms, significant

time range for the question and enable clients to

unequivocally choose fitting time interim. As an

alternative that demands less input from the users, it

automates the previous procedure and prioritizes

results from periods that we automatically identify as

relevant. We would then be able to normally

characterize the significance of a report as a mix of

point likeness and time pertinence. Uses the

following algorithms to evaluate and query GDB with

time factor using Algorithms1 Best Path Iterator 2

Ranking by Duration 3 Searching Temporal Graphs.

We have characterized a basic inquiry sentence

structure that backings fleeting predicates and

positioning components. Adjusted from TSQL2, this

language structure can express all connections

between the outcome time and a given time interim

[4] [5]. We have created two principled speculation

of Dijkstra's calculation for most limited ways.

One is to deal with transient diagrams where hubs

have timestamps to accomplish depiction reducibility.

The other is to describe the kind of positioning

capacities that it can bolster, past the separation work

in the customary setting. With these approaches, it

can be said that automatic incorporating of time line

hits to query results increases the performance of

search engines and also provides better service to the

user.

IV. PROPOSED SYSTEM

In this, we use the hyper graphs instead of the

normal graphs. Edges as known from standard graphs

model (directed or undirected) has 1:1 connections.

Hyper edges as known from hyper graphs model

(directed or undirected) has n:n connections. We

propose to exploit stronger semantic relationship in

the hyper graph for Query Search and Temporal Re-

Ranking. Hyper graph based systems topic similarities

computations are much faster and qualitative

compared to plain GDB’s. Unlike a graph that has an

edge between two vertices, a set of vertices are

connected by the hyper edge in a hyper graph.

Common graph-based learning methods usually only

consider the pair wise relationship between two

vertices, ignoring the higher-order relationship

among three or more vertices. Using this Dijkstra

algorithm in the proposed method obtain better

results. Compared to graph based methods hyper-

graph based methods yield better performance with

respect to relevancy and time.

4.1 Modules:

1. Host Setup

In this module the master node and worker/slave

nodes are created.
Master node -

Master node is responsible for storage of data and

parallel computation of the data. It allots the work to

the slave nodes

Slave node –

Slave node keeps the slices of data in it and performs

the work that master node is given to it.

2. Data Source Manager

It allocates the data to the workers from the

dataset.
3. Optimized HGDB Query implementation

In this a search engine is created in which a query is

given for searching.

4. Query Processor

This consists of Data source Server Pool Manage, Pool

Load Status Calculator; Data source Server Job

Assigner, Data source Server Job Transfers and Job

Status Acknowledger.

5. Data Source Server

It is responsible for Job Arrivals, Job Accomplisher,

Data Repository Selections, and Query Results of the

slaves or worker nodes.

6. Data set

DBLP (Digital bibliography and Library project) data

set is initially uploaded, which consists of journal

Volume%203,%20Issue%203%20|%20March-April-2018%20
http://www.ijsrcseit.com/

Volume 3, Issue 6, July-August-2018 | http:// ijsrcseit.com

D. Pavani et al. Int J S Res CSE & IT. 2018 July-August; 3(6) : 919-932

 250

information like title, author. The whole DBLP is

sliced into number of datasets.

V. RESULT EVALUATION

The keyword is given to the search engine for

searching. The keyword is being searched in the

data sets as it is selected by user. For example,

here consider the keyword as graph given to

search engine and three data sets are selected.

Then it gave 30 number of results in 4.58 sec in

existing system where as it gave 30 number of

results in 2.41sec with using hyper graph

databases as it is shown in below figure 1.

Figure 1. output representation using graph

The below shown two figures shows the output of

existing system and the proposed systems respectively.

In fig:2.we have given a keyword named

“NETWORK(query)” to search then using existing

system it has shown 5510 resulta in

16.2457(querying duration) where as with our

proposed system using HYPER GRAPH method the

same no of results i.e 5510 results have been shown

in only 12.91 sec(querying duration) for same

keyword “NETWORK(query)” as shown in fig:3.

Figure 2. output of existing system

Figure 3. output of proposed system

VI. CONCLUSION

We begin the examination of the issue of looking

short-lived outlines. We propose a direct yet

expressive watchword based inquiry semantic

structure that empowers transient information to be

demonstrated as either predicates or situating factors.

We propose a most ideal way iterator, which finds

the "best" courses between two data center points in

each time minute with respect to situating limits

where the rank of a way is monotonically non-

developing an edge expansion. By then we propose

estimations to successfully survey this kind of request

on a temporary outline to make top-k comes to

fruition. The capability and suitability of the

proposed approach are checked through wide

observational examinations.

0

5

10

15

20

25

30

35

ES PS

NO OF
RESULTS

DURATION

Volume%203,%20Issue%203%20|%20March-April-2018%20
http://www.ijsrcseit.com/

Volume 3, Issue 6, July-August-2018 | http:// ijsrcseit.com

D. Pavani et al. Int J S Res CSE & IT. 2018 July-August; 3(6) : 919-932

 251

By using the hyper graph databases searching time

has been reduced when compared to Graph databases.

Dijkstra’s algorithm is used in the hyper graph

databases for better performance. The time

complexity for searching a keyword has been reduced

to half time.

VII. REFERENCES

[1]. Ziyang Liu, Chong Wang, and Yi Chen. Keyword

Search on Temporal Graph 2016

[2]. B. Ding, J. X. Yu, S. Wang, L. Qin, X. Zhang, and

X. Lin. Finding Top-k Min-Cost Connected Trees

in Databases. In ICDE, pages 836–845, 2007.

[3]. F. Rizzolo and A. A. Vaisman. Temporal XML:

Modeling, Indexing, and Query Processing.

VLDB J., 17(5):1179–1212, 2008.

[4]. R. Bin-Thalab and N. El-Tazi. TOIX: Temporal

Object Indexing for XML Documents. In DEXA,

pages 235–249, 2015.

[5]. R. Bin-Thalab, N. El-Tazi, and M. E. El-Sharkawi.

TMIX: Temporal

ModelforIndexingXMLDocuments.

InAICCSA,pages1–8,2013.

[6]. B. Ding, J. X. Yu, and L. Qin. Finding Time-

Dependent Shortest Paths over Large Graphs. In

EDBT, pages 205–216, 2008.

[7]. H. He, H. Wang, J. Yang, and P. S. Yu. BLINKS:

Ranked Keyword Searches on Graphs. In

SIGMOD Conference, pages 305–316, 2007.

[8]. Y. Luo, X. Lin, W. Wang, and X. Zhou. SPARK:

Top-k Keyword Query in Relational Databases.

In SIGMODConference, pages 115– 126, 2007.

Volume%203,%20Issue%203%20|%20March-April-2018%20
http://www.ijsrcseit.com/

