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ABSTRACT 
 

Google play store first releases its applications in 2008. Since that, it distributes applications to all the Android 

users. In Google Play Store, an extensive number of those applications are created by a small number of 

developers; it provides benefits that user can find the specific application, purchase those applications and 

install it on their mobile devices. Since Android is open source environment, all the details about the 

application users can be easily accessed by the application developers through Google play. In Google play 1.8 

Million mobile applications are accessible and over 25 billion users download that across the world. This 

prompts to greater chance of installing malware to the applications that could affect user‟s mobile devices. 

FairPlay is formed as a system to find and use traces left behind by fraudulent developers to identify both 

malware and apps subjected to search rank fraud based on review, rating and ranking. FairPlay also links 

review activities and uniquely combines detected review, rating and ranking relations with linguistic and 

behavioural signals collected from Google Play app data. 
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I. INTRODUCTION 

 

To make fraud search in Apps is by searching the 

high ranked applications up to 30-40, which may be 

ranked high in some days, or the applications that are 

in those high ranked lists should be verified but this 

is not applied when we work for thousands of 

applications added per day. So, we go for broad view 

by applying some technique to every application to 

judge its ranking. In this paper of our project 

disclosure of ranking fraud for mobile applications, 

we develop a need to make a flawless and fraud less 

result that shows corrected application according to 

provided ranking; where we can get the result by 

searching fraud of applications. They make ranking of 

fraud App as high by using techniques such as human 

water armies and botfarms; where they make fraud 

by downloading applications through different 

devices and providing fake ratings and reviews. 

Therefore, as we said above here we have to mine 

crucial data relating particular application such as 

review, which we said, comments and so many other 

information we have to mine and place algorithm to 

detect fakeness in application rank. 

 

Some fraudulent developers deceptively boost the 

search rank and popularity of their apps (e.g., 

through fake reviews and bogus installation counts) , 

while malicious developers use app markets as a 

launch pad for their malware. The motivation for 

such behaviors is impact: app popularity surges 

translate into financial benefits and expedited 

malware proliferation. Fraudulent developers 

frequently exploit crowd sourcing sites (e.g., 

Freelancer, Fiverr, BestApp Promotion) to hire teams 

of willing workers to commit fraud collectively, 
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emulating realistic, spontaneous activities from 

unrelated people (i.e., “crowd turfing” [10]), see Fig. 1 

for an example. We call this behavior “search rank 

fraud”. In addition, the efforts of Android markets to 

identify and remove malware are not always 

successful. 

 

In this paper, we also look to identify both malware 

and search rank fraud subjects in Google Play. This 

combination is not arbitrary: we place that malicious 

developers turn to search rank fraud to increase the 

effect of their malware. Unlike existing solutions, we 

build this work on the observation that fraudulent 

and malicious behaviors leave behind telltale signs on 

app markets. Resource constraints can compel 

fraudsters to post reviews within short time intervals. 

Legitimate users affected by malware may report 

unpleasant experiences in their reviews. Malware 

(JekyllHyde) transition can be identified by sudden 

increases in the number of requested permissions 

from one version to the next version, which we will 

call “permission ramps”. 

 

Fraudulent developers use search-ranking algorithm 

to promote their apps to the top while searching. 

After downloading mobile applications from Google 

play users are asked to give the ratings and reviews 

about that particular downloaded applications. 

However, fraudulent developers give fake ratings and 

reviews about their application promote their 

application to the top. There are two typical 

approaches used for detecting malware in Google 

Play. Thus are Static and Dynamic. The dynamic 

approach needs apps to be run in a secure 

environment to detect its benign. The static approach 

is not used as the need to give all types of attack in 

early stage itself but that is impossible as everyday 

attackers find the new way to inject malware on 

applications. 

 

The rest of the paper is organized as follows: Section 

II, presents the literature survey over the related 

work. In section III, proposed system is presented. In 

section IV, implementation for each module is 

presented. Finally, the section V concludes paper. 

 

II.  LITERATURE SURVEY 

 

2.1 Android Malware Detection Using Parallel 

Machine Learning Classifiers (2014) 

This paper proposes and investigates a parallel 

machine learning based classification approach for 

early detection of Android malware. A composite 

classification model is produced from parallel 

combination of heterogeneous classifiers by using 

real malware samples and generous applications. The 

empirical evaluation of the model under different 

combination schemes demonstrates its efficacy and 

potential to improve detection accuracy. More 

specifically, their strengths can be harnessed not only 

for enhanced Android malware detection by utilizing 

several classifiers with diverse characteristics but also 

for performing quicker white box analysis using the 

more interpret-able constituent classifiers. 

Algorithm Inherently diverse machine learning 

algorithms 

Advantage Provides a complementary tool . 

Disadvantage Hard to handle app 

Conclusion A parallel classification approach to 

Android malware detection using inherently diverse 

machine learning algorithms was investigated. 

 

2.2 Opinion Fraud Detection in Online Reviews by 

Network Effects (2013) 

This paper proposes a fast and effective framework, 

FRAUD EAGLE, for spotting fraudulent developers 

and fake reviews in online review datasets. This 

technique has multiple advantages as follows: (1) it  

exploits the network effect among reviewers and 

products, unlike majority of existing techniques that 

focus on review text or behavioral analysis, (2) it 

includes two complementary steps; scoring users and 

reviews for fraud detection, and grouping for 
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visualization and sense making, (3) it operates in a 

completely unsupervised fashion without need of 

labeled data, while still incorporating side 

information if available, and (4) it is scalable to large 

datasets as its run time grows linearly with network 

size. 

Algorithm Fraud Eagle 

Advantage It consists of two complementary steps; 

Scoring users and reviews for fraud detection, and 

grouping for visualization and sense making. 

Disadvantage Little lazy start because of heavy 

dataset 

Conclusion They propose a novel framework called 

Fraud Eagle that exploits the network effects to 

automatically detect fraudulent users and fake 

reviews in online review network. 

2.3 PUMA: Permission Usage to detect Malware in 

Android (2013) 

In this Paper, they present PUMA, a new technique 

for detecting malicious Android applications by 

analyzing the extracted permissions from the 

application itself through machine-learning 

techniques. 

Algorithm Naive Bayes. Advantage The high 

detection rate. Disadvantage Time consuming. 

Conclusion Improve the detection ratio that does not 

require executing the sample. 

 

2.4 A Machine Learning Approach to Android 

Malware Detection (2012) 

In paper, they present a machine learning based 

system for the detection of malware on Android 

devices. It provides a number of features and trains a 

One-Class Support Vector Machine in an offline (off-

device) manner to leverage the higher computing 

power of a server or cluster of servers. 

Algorithm Weisfeiler-Lehman relabeling. Advantage 

these system extracts a maximum number of features. 

Disadvantage Require higher computing power 

Conclusion This system extracts a number of features 

and trains a One-Class Support Vector Machine in an 

offline (off-device) manner. 

2.5 RiskRanker: Scalable and Accurate Zero-day 

Android Malware Detection Twitter (2012) 

In paper, they propose a proactive scheme to spot 

zero day Android malware. This technique is 

motivated to assess potential security risks posed by 

these un-trusted apps without relying on malware 

samples and their signatures. Specifically, they have 

developed an automated system called Risk Ranker to 

scalable analyzes whether a particular app exhibits 

dangerous behavior (e.g. launching a root exploit or 

sending background SMS messages. 

Algorithm Android app analysis. Advantage 

Demonstrate effectiveness and accuracy. 

Disadvantage Time consuming. Conclusion They 

present a proactive scheme to scalable and accurately 

sift through a large number of apps in existing 

Android markets to spot zero-day malware. 

 

III. SYSTEM MODEL  

 

A. System model: 

We focus on the Android app market ecosystem of 

Google Play. The participants, consisting of users and 

developers, have Google accounts. Developers create 

and upload apps that consist of executables (i.e., 

apks”), a set of required permissions, and a 

description. The app market publishes this 

information, along with the app‟s received reviews 

(1-5 stars rating & text), ratings (1-5 stars, no text), 

aggregate rating (over both reviews and ratings), 

install count range (predefined buckets, e.g., 50-100, 

100-500), size, version number, price, time of last 

update, and a list of “similar” apps. 

 

B. Adversarial model: 

The system considers both malicious developers, who 

upload malware, and rational fraudulent developers. 

Fraudulent developers attempt to tamper with the 

search rank of their fraudulent apps. While Google 

keeps secret the criteria used to rank apps, the 

reviews, ratings and install counts are known to play 
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a fundamental part (see e.g., Fraudulent developers 

often rely on crowd sourcing sites to hire teams of 

workers to commit fraud collectively. To review or 

rate an app, a user needs to have a Google account, 

register a mobile device with that account, and install 

the app on the device. This process complicates the 

job of fraudsters, who are thus more likely to reuse 

accounts across review writing jobs. 

 

IV.EXISTING SYSTEM 

 

1. Within the literature, whereas there are a unit 

some 

connected work, like net ranking spam detection, 

on-line review spam detection and mobile App 

recommendation, the matter of detective work 

ranking fraud for mobile Apps remains under-

explored. 

2. Typically speaking, the connected works of this 

paper are often sorted into 3 classes. 

3. The primary class is regarding net ranking spam 

detection. 

4. The second class is targeted on detective work 

on-line review spam. 

4. Finally, the third class includes the studies on 

mobile App recommendation. 

 

V. PROPOSED SYSTEM 

 

FairPlay organizes the analysis of longitudinal app 

data into the following four modules, illustrated in 

Figure 1. The Co-Review, Rating& Recommendation 

Graph (CoReRRG) module identifies apps reviewed 

and Rated in a contiguous time window by groups of 

users with significantly overlapping review and 

Rating histories. The Review & Rating & 

Recommendation Feedback (RRRF) module exploits 

feedback left by genuine reviewers and users, while 

the Inter Review Rating Recommendation Relation 

(IRRRR) module leverages relations between reviews, 

ratings and install Rating Recommendation counts. 

The Jekyll-Hyde (JH) module is utilized to monitor 

app permissions for identifying apps that converted 

into malware from benign. Each module produces 

several features that are used to train an app classifier. 

FairPlay also uses general features such as the app‟s 

average rating, total number of reviews, and total 

number of Recommendations. 

 

A. The Co-Review, Rating& Recommendation 

Graph (CoReRRG) Module: 

The CoReRRG module utilizes the observation that 

fraudsters who control many accounts will re-use 

them across multiple purposes, and detects sub-sets of 

an app‟s reviewers that have performed significant 

common review, Rating and recommendations 

activities in the past. In the following, we describe 

the co-review rating and recommendation graph 

concept, formally present the weighted maximal 

clique enumeration problem, then introduce an 

efficient heuristic that leverages natural limitations in 

the behaviors of fraudsters. CoReRR graphs. Let the 

CoReRR graph of an app, where nodes correspond to 

user accounts who reviewed the app, and undirected 

edges have a weight that indicates the number of 

apps reviewed rated and recommended in common 

by the edge‟s endpoint users. 

 

Pseudo Clique Finder (PCF): 

The problem of finding dense structures in a given 

graph is quite basic in informatics including data 

mining and data engineering. Clique is a popular 

model to represent dense structures, and widely used 

because of its simplicity and ease in handling. Pseudo 

cliques are formed as natural extension of cliques 

which are sub graphs formed by removing small 

number of edges from cliques. We here define a 

pseudo clique by a sub graph such that the ratio of 

the number of its edges compared to that of the 

clique with the same number of vertices is no less 

than a given threshold value. In this paper, we 

address the problem of enumerating all pseudo 

cliques for a given graph and a threshold value. We 

first show that it seems to be difficult to obtain 
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polynomial time algorithms using straightforward 

divide and conquer approaches. Then, we propose a 

polynomial time, polynomial delay in precise, 

algorithm based on reverse search. The time 

complexity for each pseudo clique is 

O(Δlog |V|+min {Δ2,|V|+|E|}). Computational 

experiments show the efficiency of our algorithm for 

both randomly generated graphs and practical graphs. 

 

Algorithm 1. PCF Algorithm 

Input: days, an array of daily reviews, an array of 

daily ratings, an array of daily recommendations, and 

θ , the weighted threshold density 

Output: allCliques, set of all detected pseudo-cliques 

1. for d :=0 d < days.size(); d++ 

2. Graph PC := new Graph(); 

3. bestNearClique(PC, days[d]); 

4. c := 1; n := PC.size(); 

5. for nd := d+1; d < days.size() & c = 1; d++ 

6. bestNearClique (PC, days[nd]); 

7. c := (PC.size() > n); end for 

8. if (PC.size() > 2) 

9. AllCliques: = allCliques.add (PC); fi end for 

10. return 

11. function bestNearClique (Graph PC, Set revs, Set 

rats, Set recom) 

12. if (PC.size () = 0) 

13. for root: = 0; root < revs.size (); root++ 

14. Graph RatcandClique: = new Graph (); Graph 

RevcandClique: = new Graph ();Graph 

ReccandClique: = new Graph (); 

15. RevcandClique.addNode (revs [root].getUser ()); 

RatandClique.addNode (rats [root].getUser ()); 

ReccandClique.addNode (recom [root].getUser ()); 

16. do RevcandClique:= getMaxDensityGain(revs);do 

RatandClique:= getMaxDensityGain(rats); do 

ReccandClique:= getMaxDensityGain(recom); 

17. if (density(RevcandClique {candNode})>= θ)) for 

all  

18. RevcandClique.addNode(candNode); fi  

19. while (candNode != null); 

20. if (RevcandClique.density() > maxRho) 

21. maxRho := RevcandClique.density(); 

22. PC: = RevcandClique; fi end for 

23. else if (PC.size() > 0) 

24. do candNode:= getMaxDensityGain(revs); 

25. if (density(RevcandClique candNode) θ)) 

26. PC.addNode(candNode); fi 

27. while (candNode != null); 

28. return 

 

B. Review & Rating & Recommendation Feedback 

(RRRF) Module: 

The RRRF module exploits this observation through a 

two step approach: 

(i) detect and filter out fraudulent reviews, rating and 

recommendations then (ii) identify malware and 

fraud indicative feedback from the remaining reviews, 

rating and recommendations. 

Step 1: Fraudulent Filter:  

 Reviewer based feature: The expertise of U for app 

A, defined as the number of reviews U wrote for apps 

that are “similar” to A, as listed by Google Play  

 Text based features. To implement this feature we 

used the NLTK library and the Naive Bayes classifier, 

where these are trained on two sentences extracted 

from 700 positive and 700 negative IMDB movie 

reviews. 

Step 2: feedback extraction: 

We conjecture that (i) since no app is perfect, a 

“balanced” review that contains both app positive and 

negative sentiments is more likely to be genuine, and 

(ii) there should exist a relation between the review‟s 

dominating sentiment and its rating. Thus, after 

filtering out fraudulent reviews, we extract feedback 

from the remaining reviews. 

 

C. Inter Review Rating Recommendation Relation 

(IRRRR) Module: 

This module leverages temporal relations between 

reviews, as well as relations between the review, 

rating, recommendations and installs counts of apps, 

to identify suspicious behaviors. 
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 Temporal Relations: In order to compensate for a 

negative review, an attacker needs to post a 

significant number of positive reviews. 

 Reviews, Ratings, Recommendations and Install 

Counts: We used the Pearson‟s x2 test to investigate 

relationships between the install count and the rating 

count, as well as between the install count and the 

average app rating of the 87 K new apps, at the end of 

the collection interval. We grouped the rating count 

in buckets of the same size as Google Play‟s install 

count buckets 

 

D. Jekyll-Hyde App Detection (JH) Module: 

The module ensures distribution of the total number 

of permissions requested by malware, fraudulent and 

legitimate apps, where the module also detects 

legitimate apps requesting large numbers of 

permissions. 

VI.RESULT 

 

A. SCREENSHOT 

 
Figure 1. Adding application details 

 
Figure 2. List of applications 

 

 
Figure 3. Selected application details 

 

 
Figure 4. Searching application based on keyword 
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Figure 5: Searched application details 

 
Figure 6. Downloading searched application 

 
Figure 7. Reviewing downloaded application 

 

 
Figure 8. Review list of selected application 

 

 
Figure 9. User recommendation list for selected 

application 
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Figure 10. App‟s Rank Chart 

 

 
Figure 11. App‟s Review Fraud Chart 

 

VII.CONCLUSION AND FUTURE ENHANCEMENT 

 

A. CONCLUSION 

We proposed FairPlay as a system to identify both 

fraudulent and malware apps in Google Play. FairPlay 

accurately identifies that high percentage of malware 

is involved in search rank fraud through our 

experiments on an inventive contributed longitudinal 

app dataset. FairPlay can also identify hundreds of 

apps that evade Google Play‟s detection technology as 

well as a new type of coercive fraud attack. 

B. FUTUE ENHANCEMENT 

In the future, we plan to study more effective fraud 

evidence and analyse the latent relationship among 

rating, review, and rankings. In addition, we can 

extend our ranking fraud detection methods with 

other mobile App related services, such as mobile 

Apps recommendation, for enhancing user 

experience. 
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