
CSEIT183662 | Received : 12 July 2018 | Accepted : 28 July 2018 | July-August-2018 [3 (6) : 336-344]

International Journal of Scientific Research in Computer Science, Engineering and Information Technology

© 2018 IJSRCSEIT | Volume 3 | Issue 6 | ISSN : 2456-3307

336

Discovering Fraudulent Behaviors in Google App Stories
G. Sasikala*1, N. Jayanthi2

1Assistant Professor, Department of Computer Science and Applications, Adhiparasakthi College of Arts and

Science (Autonomous), G.B.Nagar, Kalavai, Vellore, Tamil Nadu, India
2M.Phil (CS) Research Scholar, Department of Computer Science and Applications, Adhiparasakthi College of

Arts and Science (Autonomous), G.B.Nagar, Kalavai, Vellore, Tamil Nadu, India

ABSTRACT

Google play store first releases its applications in 2008. Since that, it distributes applications to all the Android

users. In Google Play Store, an extensive number of those applications are created by a small number of

developers; it provides benefits that user can find the specific application, purchase those applications and

install it on their mobile devices. Since Android is open source environment, all the details about the

application users can be easily accessed by the application developers through Google play. In Google play 1.8

Million mobile applications are accessible and over 25 billion users download that across the world. This

prompts to greater chance of installing malware to the applications that could affect user‟s mobile devices.

FairPlay is formed as a system to find and use traces left behind by fraudulent developers to identify both

malware and apps subjected to search rank fraud based on review, rating and ranking. FairPlay also links

review activities and uniquely combines detected review, rating and ranking relations with linguistic and

behavioural signals collected from Google Play app data.

Keywords: Ranking, Review, Rating, Android market, search rank fraud, malware detection

I. INTRODUCTION

To make fraud search in Apps is by searching the

high ranked applications up to 30-40, which may be

ranked high in some days, or the applications that are

in those high ranked lists should be verified but this

is not applied when we work for thousands of

applications added per day. So, we go for broad view

by applying some technique to every application to

judge its ranking. In this paper of our project

disclosure of ranking fraud for mobile applications,

we develop a need to make a flawless and fraud less

result that shows corrected application according to

provided ranking; where we can get the result by

searching fraud of applications. They make ranking of

fraud App as high by using techniques such as human

water armies and botfarms; where they make fraud

by downloading applications through different

devices and providing fake ratings and reviews.

Therefore, as we said above here we have to mine

crucial data relating particular application such as

review, which we said, comments and so many other

information we have to mine and place algorithm to

detect fakeness in application rank.

Some fraudulent developers deceptively boost the

search rank and popularity of their apps (e.g.,

through fake reviews and bogus installation counts) ,

while malicious developers use app markets as a

launch pad for their malware. The motivation for

such behaviors is impact: app popularity surges

translate into financial benefits and expedited

malware proliferation. Fraudulent developers

frequently exploit crowd sourcing sites (e.g.,

Freelancer, Fiverr, BestApp Promotion) to hire teams

of willing workers to commit fraud collectively,

http://ijsrcseit.com/

Volume 3, Issue 6, July-August-2018 | http:// ijsrcseit.com

G. Sasikala et al. Int J S Res CSE & IT. 2018 July-August; 3(6) : 336-344

 337

emulating realistic, spontaneous activities from

unrelated people (i.e., “crowd turfing” [10]), see Fig. 1

for an example. We call this behavior “search rank

fraud”. In addition, the efforts of Android markets to

identify and remove malware are not always

successful.

In this paper, we also look to identify both malware

and search rank fraud subjects in Google Play. This

combination is not arbitrary: we place that malicious

developers turn to search rank fraud to increase the

effect of their malware. Unlike existing solutions, we

build this work on the observation that fraudulent

and malicious behaviors leave behind telltale signs on

app markets. Resource constraints can compel

fraudsters to post reviews within short time intervals.

Legitimate users affected by malware may report

unpleasant experiences in their reviews. Malware

(JekyllHyde) transition can be identified by sudden

increases in the number of requested permissions

from one version to the next version, which we will

call “permission ramps”.

Fraudulent developers use search-ranking algorithm

to promote their apps to the top while searching.

After downloading mobile applications from Google

play users are asked to give the ratings and reviews

about that particular downloaded applications.

However, fraudulent developers give fake ratings and

reviews about their application promote their

application to the top. There are two typical

approaches used for detecting malware in Google

Play. Thus are Static and Dynamic. The dynamic

approach needs apps to be run in a secure

environment to detect its benign. The static approach

is not used as the need to give all types of attack in

early stage itself but that is impossible as everyday

attackers find the new way to inject malware on

applications.

The rest of the paper is organized as follows: Section

II, presents the literature survey over the related

work. In section III, proposed system is presented. In

section IV, implementation for each module is

presented. Finally, the section V concludes paper.

II. LITERATURE SURVEY

2.1 Android Malware Detection Using Parallel

Machine Learning Classifiers (2014)

This paper proposes and investigates a parallel

machine learning based classification approach for

early detection of Android malware. A composite

classification model is produced from parallel

combination of heterogeneous classifiers by using

real malware samples and generous applications. The

empirical evaluation of the model under different

combination schemes demonstrates its efficacy and

potential to improve detection accuracy. More

specifically, their strengths can be harnessed not only

for enhanced Android malware detection by utilizing

several classifiers with diverse characteristics but also

for performing quicker white box analysis using the

more interpret-able constituent classifiers.

Algorithm Inherently diverse machine learning

algorithms

Advantage Provides a complementary tool .

Disadvantage Hard to handle app

Conclusion A parallel classification approach to

Android malware detection using inherently diverse

machine learning algorithms was investigated.

2.2 Opinion Fraud Detection in Online Reviews by

Network Effects (2013)

This paper proposes a fast and effective framework,

FRAUD EAGLE, for spotting fraudulent developers

and fake reviews in online review datasets. This

technique has multiple advantages as follows: (1) it

exploits the network effect among reviewers and

products, unlike majority of existing techniques that

focus on review text or behavioral analysis, (2) it

includes two complementary steps; scoring users and

reviews for fraud detection, and grouping for

Volume%203,%20Issue%203%20|%20March-April-2018%20
http://www.ijsrcseit.com/

Volume 3, Issue 6, July-August-2018 | http:// ijsrcseit.com

G. Sasikala et al. Int J S Res CSE & IT. 2018 July-August; 3(6) : 336-344

 338

visualization and sense making, (3) it operates in a

completely unsupervised fashion without need of

labeled data, while still incorporating side

information if available, and (4) it is scalable to large

datasets as its run time grows linearly with network

size.

Algorithm Fraud Eagle

Advantage It consists of two complementary steps;

Scoring users and reviews for fraud detection, and

grouping for visualization and sense making.

Disadvantage Little lazy start because of heavy

dataset

Conclusion They propose a novel framework called

Fraud Eagle that exploits the network effects to

automatically detect fraudulent users and fake

reviews in online review network.

2.3 PUMA: Permission Usage to detect Malware in

Android (2013)

In this Paper, they present PUMA, a new technique

for detecting malicious Android applications by

analyzing the extracted permissions from the

application itself through machine-learning

techniques.

Algorithm Naive Bayes. Advantage The high

detection rate. Disadvantage Time consuming.

Conclusion Improve the detection ratio that does not

require executing the sample.

2.4 A Machine Learning Approach to Android

Malware Detection (2012)

In paper, they present a machine learning based

system for the detection of malware on Android

devices. It provides a number of features and trains a

One-Class Support Vector Machine in an offline (off-

device) manner to leverage the higher computing

power of a server or cluster of servers.

Algorithm Weisfeiler-Lehman relabeling. Advantage

these system extracts a maximum number of features.

Disadvantage Require higher computing power

Conclusion This system extracts a number of features

and trains a One-Class Support Vector Machine in an

offline (off-device) manner.

2.5 RiskRanker: Scalable and Accurate Zero-day

Android Malware Detection Twitter (2012)

In paper, they propose a proactive scheme to spot

zero day Android malware. This technique is

motivated to assess potential security risks posed by

these un-trusted apps without relying on malware

samples and their signatures. Specifically, they have

developed an automated system called Risk Ranker to

scalable analyzes whether a particular app exhibits

dangerous behavior (e.g. launching a root exploit or

sending background SMS messages.

Algorithm Android app analysis. Advantage

Demonstrate effectiveness and accuracy.

Disadvantage Time consuming. Conclusion They

present a proactive scheme to scalable and accurately

sift through a large number of apps in existing

Android markets to spot zero-day malware.

III. SYSTEM MODEL

A. System model:

We focus on the Android app market ecosystem of

Google Play. The participants, consisting of users and

developers, have Google accounts. Developers create

and upload apps that consist of executables (i.e.,

apks”), a set of required permissions, and a

description. The app market publishes this

information, along with the app‟s received reviews

(1-5 stars rating & text), ratings (1-5 stars, no text),

aggregate rating (over both reviews and ratings),

install count range (predefined buckets, e.g., 50-100,

100-500), size, version number, price, time of last

update, and a list of “similar” apps.

B. Adversarial model:

The system considers both malicious developers, who

upload malware, and rational fraudulent developers.

Fraudulent developers attempt to tamper with the

search rank of their fraudulent apps. While Google

keeps secret the criteria used to rank apps, the

reviews, ratings and install counts are known to play

Volume%203,%20Issue%203%20|%20March-April-2018%20
http://www.ijsrcseit.com/

Volume 3, Issue 6, July-August-2018 | http:// ijsrcseit.com

G. Sasikala et al. Int J S Res CSE & IT. 2018 July-August; 3(6) : 336-344

 339

a fundamental part (see e.g., Fraudulent developers

often rely on crowd sourcing sites to hire teams of

workers to commit fraud collectively. To review or

rate an app, a user needs to have a Google account,

register a mobile device with that account, and install

the app on the device. This process complicates the

job of fraudsters, who are thus more likely to reuse

accounts across review writing jobs.

IV.EXISTING SYSTEM

1. Within the literature, whereas there are a unit

some

connected work, like net ranking spam detection,

on-line review spam detection and mobile App

recommendation, the matter of detective work

ranking fraud for mobile Apps remains under-

explored.

2. Typically speaking, the connected works of this

paper are often sorted into 3 classes.

3. The primary class is regarding net ranking spam

detection.

4. The second class is targeted on detective work

on-line review spam.

4. Finally, the third class includes the studies on

mobile App recommendation.

V. PROPOSED SYSTEM

FairPlay organizes the analysis of longitudinal app

data into the following four modules, illustrated in

Figure 1. The Co-Review, Rating& Recommendation

Graph (CoReRRG) module identifies apps reviewed

and Rated in a contiguous time window by groups of

users with significantly overlapping review and

Rating histories. The Review & Rating &

Recommendation Feedback (RRRF) module exploits

feedback left by genuine reviewers and users, while

the Inter Review Rating Recommendation Relation

(IRRRR) module leverages relations between reviews,

ratings and install Rating Recommendation counts.

The Jekyll-Hyde (JH) module is utilized to monitor

app permissions for identifying apps that converted

into malware from benign. Each module produces

several features that are used to train an app classifier.

FairPlay also uses general features such as the app‟s

average rating, total number of reviews, and total

number of Recommendations.

A. The Co-Review, Rating& Recommendation

Graph (CoReRRG) Module:

The CoReRRG module utilizes the observation that

fraudsters who control many accounts will re-use

them across multiple purposes, and detects sub-sets of

an app‟s reviewers that have performed significant

common review, Rating and recommendations

activities in the past. In the following, we describe

the co-review rating and recommendation graph

concept, formally present the weighted maximal

clique enumeration problem, then introduce an

efficient heuristic that leverages natural limitations in

the behaviors of fraudsters. CoReRR graphs. Let the

CoReRR graph of an app, where nodes correspond to

user accounts who reviewed the app, and undirected

edges have a weight that indicates the number of

apps reviewed rated and recommended in common

by the edge‟s endpoint users.

Pseudo Clique Finder (PCF):

The problem of finding dense structures in a given

graph is quite basic in informatics including data

mining and data engineering. Clique is a popular

model to represent dense structures, and widely used

because of its simplicity and ease in handling. Pseudo

cliques are formed as natural extension of cliques

which are sub graphs formed by removing small

number of edges from cliques. We here define a

pseudo clique by a sub graph such that the ratio of

the number of its edges compared to that of the

clique with the same number of vertices is no less

than a given threshold value. In this paper, we

address the problem of enumerating all pseudo

cliques for a given graph and a threshold value. We

first show that it seems to be difficult to obtain

Volume%203,%20Issue%203%20|%20March-April-2018%20
http://www.ijsrcseit.com/

Volume 3, Issue 6, July-August-2018 | http:// ijsrcseit.com

G. Sasikala et al. Int J S Res CSE & IT. 2018 July-August; 3(6) : 336-344

 340

polynomial time algorithms using straightforward

divide and conquer approaches. Then, we propose a

polynomial time, polynomial delay in precise,

algorithm based on reverse search. The time

complexity for each pseudo clique is

O(Δlog |V|+min {Δ2,|V|+|E|}). Computational

experiments show the efficiency of our algorithm for

both randomly generated graphs and practical graphs.

Algorithm 1. PCF Algorithm

Input: days, an array of daily reviews, an array of

daily ratings, an array of daily recommendations, and

θ , the weighted threshold density

Output: allCliques, set of all detected pseudo-cliques

1. for d :=0 d < days.size(); d++

2. Graph PC := new Graph();

3. bestNearClique(PC, days[d]);

4. c := 1; n := PC.size();

5. for nd := d+1; d < days.size() & c = 1; d++

6. bestNearClique (PC, days[nd]);

7. c := (PC.size() > n); end for

8. if (PC.size() > 2)

9. AllCliques: = allCliques.add (PC); fi end for

10. return

11. function bestNearClique (Graph PC, Set revs, Set

rats, Set recom)

12. if (PC.size () = 0)

13. for root: = 0; root < revs.size (); root++

14. Graph RatcandClique: = new Graph (); Graph

RevcandClique: = new Graph ();Graph

ReccandClique: = new Graph ();

15. RevcandClique.addNode (revs [root].getUser ());

RatandClique.addNode (rats [root].getUser ());

ReccandClique.addNode (recom [root].getUser ());

16. do RevcandClique:= getMaxDensityGain(revs);do

RatandClique:= getMaxDensityGain(rats); do

ReccandClique:= getMaxDensityGain(recom);

17. if (density(RevcandClique {candNode})>= θ)) for

all

18. RevcandClique.addNode(candNode); fi

19. while (candNode != null);

20. if (RevcandClique.density() > maxRho)

21. maxRho := RevcandClique.density();

22. PC: = RevcandClique; fi end for

23. else if (PC.size() > 0)

24. do candNode:= getMaxDensityGain(revs);

25. if (density(RevcandClique candNode) θ))

26. PC.addNode(candNode); fi

27. while (candNode != null);

28. return

B. Review & Rating & Recommendation Feedback

(RRRF) Module:

The RRRF module exploits this observation through a

two step approach:

(i) detect and filter out fraudulent reviews, rating and

recommendations then (ii) identify malware and

fraud indicative feedback from the remaining reviews,

rating and recommendations.

Step 1: Fraudulent Filter:

 Reviewer based feature: The expertise of U for app

A, defined as the number of reviews U wrote for apps

that are “similar” to A, as listed by Google Play

 Text based features. To implement this feature we

used the NLTK library and the Naive Bayes classifier,

where these are trained on two sentences extracted

from 700 positive and 700 negative IMDB movie

reviews.

Step 2: feedback extraction:

We conjecture that (i) since no app is perfect, a

“balanced” review that contains both app positive and

negative sentiments is more likely to be genuine, and

(ii) there should exist a relation between the review‟s

dominating sentiment and its rating. Thus, after

filtering out fraudulent reviews, we extract feedback

from the remaining reviews.

C. Inter Review Rating Recommendation Relation

(IRRRR) Module:

This module leverages temporal relations between

reviews, as well as relations between the review,

rating, recommendations and installs counts of apps,

to identify suspicious behaviors.

Volume%203,%20Issue%203%20|%20March-April-2018%20
http://www.ijsrcseit.com/

Volume 3, Issue 6, July-August-2018 | http:// ijsrcseit.com

G. Sasikala et al. Int J S Res CSE & IT. 2018 July-August; 3(6) : 336-344

 341

 Temporal Relations: In order to compensate for a

negative review, an attacker needs to post a

significant number of positive reviews.

 Reviews, Ratings, Recommendations and Install

Counts: We used the Pearson‟s x2 test to investigate

relationships between the install count and the rating

count, as well as between the install count and the

average app rating of the 87 K new apps, at the end of

the collection interval. We grouped the rating count

in buckets of the same size as Google Play‟s install

count buckets

D. Jekyll-Hyde App Detection (JH) Module:

The module ensures distribution of the total number

of permissions requested by malware, fraudulent and

legitimate apps, where the module also detects

legitimate apps requesting large numbers of

permissions.

VI.RESULT

A. SCREENSHOT

Figure 1. Adding application details

Figure 2. List of applications

Figure 3. Selected application details

Figure 4. Searching application based on keyword

Volume%203,%20Issue%203%20|%20March-April-2018%20
http://www.ijsrcseit.com/

Volume 3, Issue 6, July-August-2018 | http:// ijsrcseit.com

G. Sasikala et al. Int J S Res CSE & IT. 2018 July-August; 3(6) : 336-344

 342

Figure 5: Searched application details

Figure 6. Downloading searched application

Figure 7. Reviewing downloaded application

Figure 8. Review list of selected application

Figure 9. User recommendation list for selected

application

Volume%203,%20Issue%203%20|%20March-April-2018%20
http://www.ijsrcseit.com/

Volume 3, Issue 6, July-August-2018 | http:// ijsrcseit.com

G. Sasikala et al. Int J S Res CSE & IT. 2018 July-August; 3(6) : 336-344

 343

Figure 10. App‟s Rank Chart

Figure 11. App‟s Review Fraud Chart

VII.CONCLUSION AND FUTURE ENHANCEMENT

A. CONCLUSION

We proposed FairPlay as a system to identify both

fraudulent and malware apps in Google Play. FairPlay

accurately identifies that high percentage of malware

is involved in search rank fraud through our

experiments on an inventive contributed longitudinal

app dataset. FairPlay can also identify hundreds of

apps that evade Google Play‟s detection technology as

well as a new type of coercive fraud attack.

B. FUTUE ENHANCEMENT

In the future, we plan to study more effective fraud

evidence and analyse the latent relationship among

rating, review, and rankings. In addition, we can

extend our ranking fraud detection methods with

other mobile App related services, such as mobile

Apps recommendation, for enhancing user

experience.

IV. REFERENCES

[1]. Google Play. Online]. Available:

https://play.google.com/

[2]. E. Siegel, "Fake reviews in Google Play and

Apple App Store," Appentive, Seattle, WA,

USA, 2014.

[3]. Z. Miners. (2014, Feb. 19). "Report: Malware-

infected Android apps spike in the Google Play

store," PC World. Available: http://

www.pcworld.com /article /2099421/report-

malwareinfectedandroid-apps-spike-in-the-

google-play-store.html

[4]. S. Mlot. (2014, Apr. 8). "Top Android App a

Scam, Pulled From Google Play," PCMag.

Available: http://www.pcmag.com/

article2/0,2817,2456165,00.asp

[5]. D. Roberts. (2015, Jul. 8). "How to spot fake

apps on the Google Play store," Fortune.

Available: http://fortune.com/2015/07/08/

google-play-fake-app/

[6]. A. Greenberg (2012, May 23). "Researchers say

they snuck malware app past Google‟s

„Bouncer‟ Android market scanner," Forbes

Security, Online]. Available:

http://www.forbes.com/ sites/ andy Green berg

/ 2012/05/23/researchers-say-they

snuckmalware-app-past-googles-bouncer-

android-market-scanner/ #52c8818d1041

[7]. Freelancer. Online]. Available: http://www.free

lancer. com

[8]. Fiverr. Online]. Available: https://www.fiverr.

com/

0

0.2

0.4

0.6

0.8

1

App's Rank Chart

Rank

0

0.2

0.4

0.6

0.8

1

App's Fraud Review
Chart

Rank

Volume%203,%20Issue%203%20|%20March-April-2018%20
http://www.ijsrcseit.com/

Volume 3, Issue 6, July-August-2018 | http:// ijsrcseit.com

G. Sasikala et al. Int J S Res CSE & IT. 2018 July-August; 3(6) : 336-344

 344

[9]. BestAppPromotion. Online]. Available:

www.bestreviewapp. com/

[10]. G. Wang, et al., "Serf and turf: Crowdturfing for

fun and profit," in Proc. ACM WWW, 2012.

Online]. Available: http://doi.acm. org/10.1145/

2187836.2187928

[11]. J. Oberheide and C. Miller, "Dissecting the

Android Bouncer," presented at the

SummerCon2012, New York, NY, USA, 2012.

[12]. VirusTotal - free online virus, Malware and

URL scanner. Online]. Available https://www.

virustotal.com/, Last accessed on: May 2015.

[13]. I. Burguera, U. Zurutuza, and S. Nadjm-Tehrani

, "Crowdroid: Behavior-based Malware

detection system for Android," in Proc. ACM

SPSM, 2011, pp. 15–26.

[14]. A. Shabtai, U. Kanonov, Y. Elovici, C. Glezer,

and Y. Weiss, "Andromaly: A behavioral

malware detection framework for Android

devices," Intell. Inform. Syst., vol. 38, no. 1, pp.

161–190, 2012.

[15]. M. Grace, Y. Zhou, Q. Zhang, S. Zou, and X.

Jiang, "RiskRanker: Scalable and accurate zero-

day Android malware detection," in Proc. ACM

MobiSys, 2012, pp. 281–294.

[16]. B. P. Sarma, N. Li, C. Gates, R. Potharaju, C.

Nita-Rotaru, and I. Molloy, "Android

Permissions: A Perspective Combining Risks

and Benefits," in Proc. 17th ACM Symp. Access

Control Models Technol., 2012, pp. 13–22.

[17]. H. Peng, et al., "Using probabilistic generative

models for ranking risks of Android Apps," in

Proc. ACM Conf. Comput. Commun. Secur.,

2012, pp. 241–252.

[18]. S. Yerima, S. Sezer, and I. Muttik, "Android

Malware detection using parallel machine

learning classifiers," in Proc. NGMAST, Sep.

2014, pp. 37–42.

[19]. Y. Zhou and X. Jiang, "Dissecting Android

malware: Characterization and evolution," in

Proc. IEEE Symp. Secur. Privacy, 2012, pp. 95–

109.

[20]. Fraud detection in social networks, Online].

Available: https:// users.cs.fiu.edu/ carbunar

/caspr.lab /socialfraud.html

[21]. Google I/O 2013 - getting discovered on Google

Play, 2013. Online]. Available:

www.youtube.com/ watch?v=5Od2SuL2igA

Volume%203,%20Issue%203%20|%20March-April-2018%20
http://www.ijsrcseit.com/

