
CSEIT183676 | Received : 1 July 2018 | Accepted : 31 July 2018 | July-August-2018 [3 (6) : 409-414]

International Journal of Scientific Research in Computer Science, Engineering and Information Technology

© 2018 IJSRCSEIT | Volume 3 | Issue 6 | ISSN : 2456-3307

409

A Study on Performance Analysis of Data Structures
Anne Srijanya K

Assistant Professor, CMR Engineering College, Hyderabad, Telangana, India

ABSTRACT

The Need for Data Structures is to organize data more efficaciously for complex applications. Many data

structures exist but we need to select the confiscated data structure to meet the solution. A survey has been

carried out on different types of data structures to identify their qualities and demarcations. This paper

describes prominent data structures in a consistent manner to provide a concise comparison on performance of

data structures. This paper presents a brief study on performance, time complexity and applications of data

structures. This paper classifies data structures into seven categories that group them according to their time

complexity.

Keywords : Data Structure, Time Complexity, Performance

I. INTRODUCTION

Data structures are used in the situations where

logical relationship is required between the data

elements in order to store the data. The logical or

mathematical model of a particular organization of

data is called as data structure [1]. Data structures are

designed to organize data to suit a specific purpose so

that it can be accessed and worked with in

appropriate ways. In computer programming, a data

structure may be selected or designed to store data for

the purpose of working on it with various algorithms

[2]. Data structures provide a means to manage huge

amounts of data efficiently. Some formal design

methods and programming languages emphasize data

structures, rather than algorithms. While Selecting a

Data Structure first we need to analyze the problem

to determine the resource constraints a solution must

meet, and then determine the basic operations that

must be supported. We need to calculate the resource

constraints for each operation and at last select the

data structure that best meets these requirements. In

general we can change the data structures

dynamically to prepare the data for a given algorithm.

The implementation of a data structure usually

requires writing a set of procedures that create and

manipulate instances of that structure.

This paper gives clear description about the Data

Structures, time complexity analysis and their

applications. Section II presents related work that is

carried out for analyzing the time complexity of data

structures and also the classification based on their

time complexity. Section III describes the time

complexity analysis for insertion, deletion and search

operations for different range of elements (N).

Section IV presents the experimental results and

discusses its performance over each scenario

(different values of N). Section V presents real time

applications and finally section VI presents the

conclusions of the paper.

II. RELATED WORK

Premeditation and analysis of each and every data

structure are done and based on their run time for

each operation with different range of input data (N).

http://ijsrcseit.com/

Volume 3, Issue 6, July-August-2018 | http:// ijsrcseit.com

Anne Srijanya. K et al. Int J S Res CSE & IT. 2018 July-August; 3(6) : 409-414

 410

Data structures are classified in to seven categories

that group them according to their time complexity.

These data structures works efficiently according to

the user’s problem definition with unique

performance. The following Table:1 shows the time

complexity of each data structure which is further

used for classification.

Table 1. Time Complexity of each Data Structure for Insertion, Deletion and Search operations

Name of the Data

Structure

Time Complexity

Insertion Deletion Search

Category 1
Stack

Ο(1) Ο(1) Ο(1)
Queue

Category 2
List

Ο(1) Ο(N) Ο(N)
Linked list

Category 3
Heap

Ο(LOG N) Ο(LOG N) Ο(N)
Binary Heap

Category 4

B-Tree

Ο(LOG N) Ο(LOG N) Ο(LOG N)

2-3-4 Tree

B+ Tree

Red Black Tree

Splay Tree

Category 5
Priority Queue

Ο(1) Ο(LOG N) Ο(1)
Fibonacci Heap

Category 6 Dequeue Ο(1) Ο(1) Ο(N)

Category 7 Binary Tree Ο(N) Ο(N) Ο(LOG N)

Table 2. Run time for different input data size (N)

Notation Complexity Description

Run time (in Seconds) for different input

data size N

N=10000 N=1000000 N=10000000

Ο(1) Constant

Constant number of

operations, not depending

on the input data size

Constant

time

Constant time

Constant time

Ο(log N) Logarithmic
Number of operations

proportional to log2(N)

10
-5

secs

(0.00001

secs)

1.7*10
-5

secs

(0.000017

secs)

2*10
-5

secs

(0.00002

secs)

Ο(N) Linear

Number of operations

proportional to the input

data.

10
-3

secs

(0.001 secs)
0.1 secs 1 sec

Volume%203,%20Issue%203%20|%20March-April-2018%20
http://www.ijsrcseit.com/

Volume 3, Issue 6, July-August-2018 | http:// ijsrcseit.com

Anne Srijanya. K et al. Int J S Res CSE & IT. 2018 July-August; 3(6) : 409-414

 411

III. TIME COMPLEXITY ANALYSIS

Time complexity analysis is required to predict the

resources that the algorithm requires and to estimate

the running time of an algorithm. Here Different

values for N (input data size) were taken and

analysed the run time for insertion, deletion and

search operations for the data structures discussed

above. The

Based on the above Table 2 for different values of N

and the based on Table: 1, graphs are depicted for

insertion, deletion and search operations to illustrate

the performance of data structures graphically. Table:

2 illustrate the big Ο notation, complexity and run

time in seconds.

Figure 1. Comparison of Time Complexity of data

structures for Inserting an element considering

different values of N

Figure 2. Comparison of Time Complexity of data

structures for Deleting an element considering

different values of N

Figure 3. Comparison of Time Complexity of data

structures for Searching an element considering

different values of N

IV. OBSERVATIONS

Table 3 show the observations, an input explain how

the run time will vary for different data sizes for

performing each operation. The Table clearly

describes how the run time will change when the

size of the input data increases and it also tells which

data structure is best suited for performing specific

operations.

 Stack and queue take constant time for

performing all the operations irrespective of

size of input data.

 As the input data size increases the run time

rapidly increases for searching an element in a

linked list.

 The run time for inserting and deleting an

element from the binary heap is very less, but

as the input data size increases run time for

searching an element rapidly increases. If the

algorithm involves appending a lot of data then

heaps can be used and is best suited if a large

number of insertions and deletions are needed.

Volume%203,%20Issue%203%20|%20March-April-2018%20
http://www.ijsrcseit.com/

Volume 3, Issue 6, July-August-2018 | http:// ijsrcseit.com

Anne Srijanya. K et al. Int J S Res CSE & IT. 2018 July-August; 3(6) : 409-414

 412

 Irrespective of the size of the input data the run

time for the data structures which belongs to

category 4 for performing insertion, deletion

and search operations is very less. To keep data

sorted; despite arbitrary inserts and deletes then

a red black tree can be preferred. The run time

for performing insertion and search operations

is constant for priority queue and Fibonacci

heap, but for deleting an element run time is

very less. Priority queue can be used to order a

list by some kind of importance.

 The run time for dequeue is constant for

insertion and deletion operations, but as the

size of the input data increases run time

increases rapidly.

 In contrast to other data structures, for a binary

tree the run time for inserting and deleting an

element rapidly increases as the input data size

increases. But once after inserting all the

elements run time for searching an element is

very less irrespective of size of input data. A

binary tree is a good data structure to use for

searching sorted data.

Table 3. Run time analysis for different input data size (N)

 Run Time analysis for input data size (N)

Name of

the
Insertion Deletion Search

Data

Structure

For small

input
As the input

For small

input
As the input

For small

input
As the input

 data size
 data size

increases
 data size

 data size

increases
 data size

data size

increases

Category

1

Stack constant

time
constant time

constant

time
constant time

constant

time
constant time

Queue

Category

2

List constant

time
constant time less

increases

rapidly
 less

increases

rapidly Linked list

Category

3

Heap

very less very less very less very less less
increases

rapidly
Binary

Heap

Category

4

B-Tree

very less very less very less very less very less very less

2-3-4 Tree

B+ Tree

Red Black

Tree

Splay Tree

Category

5

Priority

Queue constant

time
constant time very less very less

constant

time
constant time

Fibonacci

Heap

Category

6
Dequeue

constant

time
constant time

constant

time
constant time less

increases

rapidly

Category

7

Binary

Tree
less

increases

rapidly
less

increases

rapidly
very less very less

V. APPLICATIONS

 Stacks can be used for converting a decimal

number into a binary number, Towers of Hanoi

Volume%203,%20Issue%203%20|%20March-April-2018%20
http://www.ijsrcseit.com/
http://en.wikipedia.org/wiki/Stack_%28data_structure%29#Converting_a_decimal_number_into_a_binary_number
http://en.wikipedia.org/wiki/Stack_%28data_structure%29#Converting_a_decimal_number_into_a_binary_number
http://en.wikipedia.org/wiki/Stack_%28data_structure%29#Towers_of_Hanoi

Volume 3, Issue 6, July-August-2018 | http:// ijsrcseit.com

Anne Srijanya. K et al. Int J S Res CSE & IT. 2018 July-August; 3(6) : 409-414

 413

problem, parsing, and in runtime memory

management.

 Queue can be used for Simulation, Ordered

requests and Searches.

 Priority Queue can be used for Bandwidth

management, Discrete event simulation,

Dijkstra's algorithm, Huffman coding, A* and

SMA* search algorithms and ROAM

triangulation algorithm.

 Deque is used for the A-Steal job scheduling

algorithm.

 List can be used to store a list of records. The

items in a list can be sorted for the purpose of

fast search (binary search).

 Linked Lists are used to implement several

other common abstract data types, including

stacks, queues, associative arrays, and symbolic

expressions.

 Heap data structure is used in Heap sort,

Selection algorithms, and Graph algorithms.

 Binomial Heaps are used in discrete event

simulation and Priority queues.

 B-Trees have wide range of application in Data

base, Dictionaries, 1-D range search.

 2-3-4 Trees are used as in-memory data

structures so user could memory program steps

rather than disc accesses when evaluating and

optimizing an implementation.

 Red-Black Trees are used in time-sensitive

applications such as applications and

in functional programming and to construct

associative sets.

 Binary Tree are Used in many search

applications where data is constantly

entering/leaving, such as the map and set

objects in many languages' libraries.

VI. CONCLUSION

This survey paper analyses the run time of data

structures for performing different operations by

considering different range of input data size.. The

data structures described in this paper are prominent

and efficient. The degree of speed-up in practice will

depend upon the machines on which they are

implemented.

During this survey, found some points that can be

further explored in the future, such as to design

algorithms and data structures in order to minimize

the run time even for larger input data sizes and try

to explore deeper in this research area.

VII. REFERENCES

[1]. Dr. N. Kashivishwanath "Data Structure Using

C++", Laxmi publications

[2]. Data structure tutorial online],

Available"http://searchsqlserver.techtarget.com

/definition/data-structure".

[3]. Stack tutorial online] available

"http://www.cprogramming.com/tutorial/comp

utersciencetheory/stack.html"

[4]. Sartaj Sahni, "Data structures, Algorithms and

Applications in C++".

[5]. Gopal, Arpita. "Magnifying Data Structures"

PHI.

[6]. Donald Knuth. "The Art of Computer

Programming",Volume1: Fundamental

Algorithms, Third Edition. Addison-Wesley,

1997. Stacks, Queues, and Deques, Binary

Trees.

[7]. "Definition of a linked list". National Institute

of Standards and Technology. 2004-08-16.

Retrieved 2004-12-14.

[8]. Parlante, Nick (2001). "Linked list basics".

Stanford University. Retrieved 2009-09-21.

[9]. Goodrich, Michael T.; Tamassia, Roberto

(2004). "7.3.6. Bottom-Up Heap Construction".

Data Structures and Algorithms in Java (3rd

ed.). pp. 338–341

[10]. Atkinson, M.D., J.-R. Sack, N. Santoro, and T.

Strothotte. "Min-max heaps and generalized

Volume%203,%20Issue%203%20|%20March-April-2018%20
http://www.ijsrcseit.com/
http://en.wikipedia.org/wiki/Priority_queue#Bandwidth_management
http://en.wikipedia.org/wiki/Priority_queue#Bandwidth_management
http://en.wikipedia.org/wiki/Priority_queue#Discrete_event_simulation
http://en.wikipedia.org/wiki/Priority_queue#Dijkstra.27s_algorithm
http://en.wikipedia.org/wiki/Priority_queue#Huffman_coding
http://en.wikipedia.org/wiki/Priority_queue#A.2A_and_SMA.2A_search_algorithms
http://en.wikipedia.org/wiki/Priority_queue#A.2A_and_SMA.2A_search_algorithms
http://en.wikipedia.org/wiki/Priority_queue#ROAM_triangulation_algorithm
http://en.wikipedia.org/wiki/Priority_queue#ROAM_triangulation_algorithm
http://en.wikipedia.org/wiki/Scheduling_algorithm
http://en.wikipedia.org/wiki/Scheduling_algorithm
http://en.wikipedia.org/wiki/Binary_search
http://en.wikipedia.org/wiki/Abstract_data_type
http://en.wikipedia.org/wiki/Stack_data_structure
http://en.wikipedia.org/wiki/Queue_%28data_structure%29
http://en.wikipedia.org/wiki/Associative_array
http://en.wikipedia.org/wiki/Symbolic_expression
http://en.wikipedia.org/wiki/Symbolic_expression
http://en.wikipedia.org/wiki/Heapsort
http://en.wikipedia.org/wiki/Selection_algorithm
http://en.wikipedia.org/wiki/List_of_algorithms#Graph_algorithms
http://en.wikipedia.org/wiki/Discrete_event_simulation
http://en.wikipedia.org/wiki/Discrete_event_simulation
http://en.wikipedia.org/wiki/Priority_queue
http://en.wikipedia.org/wiki/Functional_programming
http://en.wikipedia.org/wiki/Functional_programming

Volume 3, Issue 6, July-August-2018 | http:// ijsrcseit.com

Anne Srijanya. K et al. Int J S Res CSE & IT. 2018 July-August; 3(6) : 409-414

 414

priority queues." Programming techniques and

Data structures.

[11]. Comer, Douglas (June 1979), "The Ubiquitous

B-Tree", Computing Surveys 11 (2): 12137.

[12]. Thomas H. Cormen, Charles E. Leiserson,

Ronald L. Rivest, and Clifford Stein.

"Introduction to Algorithms", MIT Press and

McGraw-Hill, Chapter 18: B-Trees, Chapter 13:

Red–Black Trees Chapter 20: Fibonacci Heaps

[13]. Grama, Ananth (2004). "(2,4) Trees". CS251:

Data Structures Lecture Notes. Department of

Computer Science, Purdue University.

[14]. Ramakrishnan, R. and Gehrke, J. "Database

Management Systems", McGraw-Hill Higher

Education (2002), 3rd edition.

[15]. San Diego State University: CS 660: Red–Black

tree notes, by Roger Whitne

[16]. Sleator, Daniel D.; Tarjan, Robert E. (1985),

"Self-Adjusting Binary Search Trees", Journal of

the ACM.

Volume%203,%20Issue%203%20|%20March-April-2018%20
http://www.ijsrcseit.com/

