
CSEIT183677 | Received : 12 July 2018 | Accepted : 28 July 2018 | July-August-2018 [3 (6) : 396-404]

International Journal of Scientific Research in Computer Science, Engineering and Information Technology

© 2018 IJSRCSEIT | Volume 3 | Issue 6 | ISSN : 2456-3307

396

Design and implementation Framework of Energy Efficient and

Scalable RDF data Query Processing to Multi Server Query

Processor (MSQP) in ELearnAPP
P. Hariharan*1, R. Prakash2

1Assistant Professor, PG & Research Department of Computer Science and Applications, Adhiparasakthi College

of Arts and Science (Autonomous), G.B.Nagar, Kalavai, Vellore, Tamil Nadu, India
2 M.Phil (CS) Research Scholar, PG & Research Department of Computer Science and Applications,

Adhiparasakthi College of Arts and Science (Autonomous), G.B.Nagar, Kalavai, Vellore, Tamil Nadu, India

ABSTRACT

E-learning is learning new things through the use of technologies. It is growing at a rapid pace. Today more

organizations are taking up e-learning. While e-learning technology developed extensively since its origin,

there are numerous issues that experts find when come to executing e-learning Planning. One of the

fundamental issues is the complexity of integrating these systems with content and with different type of

business systems. RDF is a data model for representing labeled directed graphs, and it is an important building

block of semantic web. Due to its flexibility and relevance, RDF has been utilized as a piece of e-learning. In

these applications, large-scale graph datasets are extremely normal. Notwithstanding, existing techniques are

not effectively managing them. We introduce a query processing system using Parallel Web Server, it consists

of two noteworthy modules (1) The Master node and (2) Worker Nodes. The Master node investigates and

analyzes the RDF data and places parts of data over multiple servers. The Worker Nodes parses the user query

and distributes sub queries to cluster nodes. Also, the results of sub queries from various servers are gathered

(and re-evaluated if necessary) and delivered to the user. Parallel Web Server goes for process queries by their

deadlines, and preferred advantage high-level scheduling data to reduce the CPU energy consumption of a

query-processing node. MSQP construct its decision on query efficiency predictors, estimating the processing

volume and preparing time of a query. In e-learning ecosystem can assist organizations to achieve the

advantages of an integrated approach to develop e-learning systems. It can be utilized for building a virtual

environment for both educating and learning.

Keywords : Ranking, Review, Rating, Android Market, Search Rank Fraud, Malware Detection

I. INTRODUCTION

As of late, we have witnessed huge development and

gigantic changes in the e-learning industry. A

effective e-learning course requires thinking about

the following contextual components:

 Environment - students require a specific

environment (PC, Connection, software) and

some preparation should be done to ensure that

the student has that.

 Teach skills - students need to know something

about how to utilize whatever learning

framework exists.

 Subject matter skills - students need to have

some essential skills to profit from the course.

 Support - there must be a system to get support

when students keep running into issues.

http://ijsrcseit.com/

Volume 3, Issue 6, July-August-2018 | http:// ijsrcseit.com

P. Hariharan, et al. Int J S Res CSE & IT. 2018 July-August; 3(6) : 396-404

 397

 Content - must be designed for interaction/

collaboration.

 Instructor - mindful of students needs/concerns

and involvement levels, endeavors to draw

students into discussion early, organizes

schedule, provides resources for students in

needing of additional learning (remedial).

 Technology - should assume a servant role.

 Organisation - concentrated on learning, time

and assets made accessible, students supported

through help-desk.

Traditionally, social information processing is scaled

out by partitioning the relations and rewriting the

query plans to reorder operations and utilize

disseminated versions of the operators empowering

intra-operator parallelism. While some operations are

easy to parallelize (e.g., large-scale, distributed

counts), many operations, such as distributed joins,

are more complex to parallelize in view of the

subsequent movement they potentially generate.

While much more recent than social information

management, RDF data management has obtained

numerous relational techniques; Many RDF systems

rely on hash-partitioning (on triple or property tables)

and on dispersed choices, projections, and joins. Our

own particular GridVine system was one of the first

systems to do so in the context of large-scale

decentralized RDF management. Hash partitioning

has numerous advantages, including simplicity and

effective load balancing. In any case, it additionally

produces much inter-process traffic, given that

related triples (e.g., that must be chosen and

afterward joined) wind up being scattered on all

machines.

In this article, we propose MSQP, an efficient,

distributed and scalable RDF data processing system

for distributed and cloud conditions. s opposed to

numerous distributed systems, MSQP utilizes a

resolutely non-relational storage format, where

semantically related data patterns are mined from

both the instance-level and the schema-level data

and get co-located to minimize inter-node operations.

The principle contributions of this article are:

 A new hybrid storage model that efficiently

and effectively partitions an RDF graph and

physically co-locates related instance data.

 A new system architecture for dealing with

fine-grained RDF partitions in large-scale.

 Novel information placement procedures to co-

locate semantically related pieces of data.

 New information loading and query execution

procedures exploiting our system’s data

partitions and indices.

II. RELATED WORK

Query on a specific geographic region by user to

constrain to search results in a Geographic web listes.

This geographic search technology is called local

search and is being executed with noteworthy

interest in realsearch engines. Academic research was

conducted for extracting geographic knowledge from

the web. Combination of content and spatial

information preparing is utilized as a part of such

geographic web search engines. This research focus

on geographic search engines and it is converged

with general web query processing. Each page in

such search engine additionally has a geographic area

of relevance associated with it, called the geographic

footprint of the page It extracts geographic

information. for example, city names, addresses, or

references to point of interests, from the pages and

then maps these to positions using external

geographic databases. Footprints are represented as

polygons and bitmap based structures. These search

engines can be divided into crawling, data mining,

list construction, and query processing. In this system,

it focuses on Germany and crawl the ―de‖ domain; in

cases where the coverage area does not correspond

well to any set of domains, focused crawling

Volume%203,%20Issue%203%20|%20March-April-2018%20
http://www.ijsrcseit.com/

Volume 3, Issue 6, July-August-2018 | http:// ijsrcseit.com

P. Hariharan, et al. Int J S Res CSE & IT. 2018 July-August; 3(6) : 396-404

 398

strategies that may be needed to find the relevant

pages. Overall ranking function might be of the form.

Fundamental commitments in this paper are as per

the following:

 Discuss and formally examine the query-

processing problem in geographic web search

engines.

 Describe a few proficient algorithms for query

processing in geographic search engines.

 Integrate the algorithms into an existing high

performance query processor for a scalable

search engine, and assess them on a large web

crawl and queries derived from a real query

trace.

There are search engines with quick query processing

and results about are additionally required quicker

where as other search engines with large batches of

queries are submitted for different web mining and

system enhancement tasks that do not require an

immediate response and such search engines are

called as batch processing search engines. Here,

conclusion is that significant cost diminishments are

conceivable by utilizing specific mechanisms for

executing batch queries in Web search engines.

Three categories of Web query languages can be

distinguished, according to the format of the data

they can retrieve: XML, RDF and Topic Maps. This

article introduces the spectrum of languages falling

into these categories and summarizes their salient

aspects.

Various formalisms have been proposed for

representing Semantic Web meta-information,

specifically RDF, Topic Maps, and OWL (formerly

known as DAML+OIL). These formalisms typically

enable one to describe relationships between data

items, such as concept hierarchies and relations

between concepts. Semantic Web is an integrated

access to the data on the Web that is spoken to in any

of the previously mentioned formalisms.

The accompanying three questions are at the heart of

building up a query language:

1. What are the core data retrieval capabilities of

each query language?

2. to what extent, and what forms of reasoning do

they offer, and

3. How are they realized?

It focuses on introducing and comparing languages

designed primarily for providing efficient and

effective access to data on the Web and Semantic

Web. Specifically, it avoids the following types of

languages: Programming language tools for XML,

Reactive languages, Rule languages, OWL query

languages.

III. STORAGE MODEL

Our storage framework in MSQP can be viewed as a

hybrid structure broadening a few of the ideas from

above. Our framework is built based on three

principle structures: RDF AtomicStructure clusters

(which can be viewed as hybrid structures getting

from both property tables and RDF subgraphs),

Model records (storing literals in compact records as

in a column-oriented database framework) and an

efficient key list listing URIs and literals based on the

clusters they belong to. Contrary to the property-

table and column-oriented approaches, our system

based on templates and AtomicStructure is more

flexible, as in every Models can be adjusted

progressively, for example following the addition of

new information or a shift in the workload, without

requiring to alter the other Models or

AtomicStructure. Also, we present a unique

combination of physical structures to handle RDF

data both horizontally (to flexibly co-locate entities

or values related to a given instance) as well as

vertically (to co-locate series of entities or values

attached to similar instances).

Volume%203,%20Issue%203%20|%20March-April-2018%20
http://www.ijsrcseit.com/

Volume 3, Issue 6, July-August-2018 | http:// ijsrcseit.com

P. Hariharan, et al. Int J S Res CSE & IT. 2018 July-August; 3(6) : 396-404

 399

Figure 1. The two main data structures in MSQP:

AtomicStructure clusters, storing in this case RDF

subgraphs about students, and a Model records,

storing a list of literal values corresponding to student

IDs.

Figure 1 gives a simple example of a few

AtomicStructure clusters— storing information about

students—and of a Model list— compactly storing

lists of student IDs. AtomicStructures can be seen as

horizontal structures storing information about a

given instance in the database (like rows in relational

systems). Model lists, on the other hand, store

vertical lists of values corresponding to one attribute

(like columns in a relational system).

3.1 Key List

The Key List is the focal list in MSQP; it utilizes a

lexicographical tree to parse every incoming URI or

literal and assign it a unique numeric key value. It

then stores, for every key and every Model ID, an

ordered list of all the clusters IDs containing the key

(e.g., ―key 10011, corresponding to a Course object

[Model ID 17], appears in clusters 1011, 1100 and

1101‖; see also Figure 2 for another example). This

may seem like a peculiar way of listing values, but we

show below that this actually allows us to execute

numerous queries very efficiently simply by reading

or intersecting such Records in the hash-table

directly.

Figure 2. An insert using Models: an incoming triple

(left) is matched to the current RDF Model of the

database (right), and inserted into the hash-table, a

cluster, and a Model list.

3.2 AtomicStructures

MSQP uses physiological RDF partitioning and

AtomicStructure patterns to efficiently co-locate RDF

data in distributed settings. Figure 3 (ii) gives an

example of Atomic Structure. Atomic Structures have

three key advantages in our context:

 Atomic Structures speak to the perfect tradeoff

between co-location and degree of parallelism

when partitioning RDF data. Partitioning RDF

data at the triple-level is problematic due to the

numerous joins it generates; Large graph

partitions are imperfect also, since all things

considered an excessive number of related

triples are co-located, in this way inhibiting

parallel processing

 All AtomicStructures are Model-based, and

consequently store data extremely compactly;

 Finally, the Atomic Structures are defined in

order to materialize frequent joins, for example

between an entity and its corresponding values

(e.g., between a student and his/her first name),

or between two semantically related entities

(e.g., between a student and his/her counselor)

that are frequently co-accessed.

When accepting another triple the framework

embeds it in the corresponding Atomic Structure(s).

Volume%203,%20Issue%203%20|%20March-April-2018%20
http://www.ijsrcseit.com/

Volume 3, Issue 6, July-August-2018 | http:// ijsrcseit.com

P. Hariharan, et al. Int J S Res CSE & IT. 2018 July-August; 3(6) : 396-404

 400

In case the corresponding Atomic Structure does not

exist yet, the framework creates a new Atomic

Structure cluster, embeds the triple in the Atomic

Structure, and embeds the cluster in the list of

clusters it maintains. Figures 3 give a Model

illustration that co-locates information relating to

Student instances along with a case of an Atomic

Structure for Student123.

Figure 3. A Atomic Structure Model (i) along with

one of its RDF Atomic Structures (ii)

3.3 Auxiliary Lists

While creating Atomic Structure Models and Atomic

Structures identifiers, our framework likewise take

considerations of two extra data gathering and

analysis tasks. First, it inspects both the schema and

instance data to determine all subsumption (subclass)

relations between the classes, and keeps up this

information in a compact type hierarchy. We allot to

every key the most particular type possible in order

to avoid having to materialize the type hierarchy for

every instance, and handle type inference at query

time by looking up types in the type hierarchy. In

case two unrelated types are assigned to a given

instance, the partition manager makes a new virtual

type composed of the two kinds and assigns it to the

instance. Finally, we maintain statistics on each

Model, counting the number of instances for each

vertex (instance / literal) and edge (property) in the

Models.

3.4 Master Node

The Master node is made out of three principle

subcomponents: a key list in charge of encoding URIs

and literals into minimized framework identifiers and

of interpreting them back, a partition manager in

charge of apportioning the RDF data into recurring

subgraphs, and a distributed query executor

responsible for parsing the incoming query, rewriting

the query plans for the Workers, gathering lastly

restoring the outcomes to the client. Note that the

Master node can be replicated at whatever point

important to insure proper query load balancing and

fault-tolerance. The Master can also be duplicated to

scale out the key list for extremely large datasets, or

to replicate the dataset on the Workers utilizing

diverse partitioning schemes (all things considered,

each new instance of the Master is responsible for

one partitioning scheme).

3.5 Worker Nodes

The Worker nodes hold the partitioned data and its

corresponding local indices, and are in charge of

running subqueries and sending results back to the

Master node. Thoughtfully, the Workers are

considerably less complex than the Master node and

are built on three main data structures: i) a sort list,

clustering all keys based on their types ii) a series of

RDF Atomic Structures, storing RDF data as very

compact subgraphs, and iii) a Atomic Structure list,

storing for each key the list of Atomic Structures

where the key can be found.

3.6 Query Processing

Query processing in MSQP is very different from past

approaches to execute queries on RDF data, because

of the three peculiar data structures in our system: a

key list associating URIs and literals to Model IDs and

cluster lists, clusters storing RDF Atomic Structures

in a very compact fashion, and Model lists storing

compact lists of literals. All queries made out of one

Basic Graph Pattern (star-like queries) are executed

absolutely in parallel, autonomously on all Workers

Volume%203,%20Issue%203%20|%20March-April-2018%20
http://www.ijsrcseit.com/

Volume 3, Issue 6, July-August-2018 | http:// ijsrcseit.com

P. Hariharan, et al. Int J S Res CSE & IT. 2018 July-August; 3(6) : 396-404

 401

without any central coordination thanks to the

Atomic Structures and their Lists. For queries that

still require some level of distributed coordination—

regularly to deal with distributed joins—we resort to

adaptive query execution strategies. We mainly have

two different ways of executing distributed joins: at

whatever the intermediate result set is small (i.e., up

to a few hundred tuples according to our Statistics

components), we send all results to the Master,

which finalizes the join centrally. Otherwise, we fall

back to a distributed hash-join by distributing the

smallest result set among the Workers. Distributed

joins can be stayed away from as a rule by falling

back on the dispersed data partitioning and data co-

location schemes described above. Algorithm 1 gives

a high-level description of our distributed query

execution process featuring where specific tasks are

performed in our framework.

IV. ALGORITHM

Algorithm 1 High Level Query Execution Algorithm

1: Master: isolate query based on Atomic Structure

scopes to obtain subqueries

2: Master: send sub-queries to workers

3: Workers: execute sub-queries in parallel

4: Master: gather moderate results

5: Master: perform distributed join whenever

necessary.

Algorithm 2 Query Execution Algorithm with Join on

the Master Node

1. procedure EXECUTEQUERY (a; b)

2. for all BGP in QUERY do BGP - Basig Graph

Pattern

3. if BGP.subject then

4. Atomic Structures ←GetAtomic Structure

(subject)

5. else if BGP.object then

6. Atomic Structures← GetAtomic Structures

(object)

7. end if

8. for all Atomic Structures do

9. check if the Atomic Structure matches the BGP

10. for all TP in BGP do TP - Triple Pattern

11. if TP.subject != Atomic Structure.subject then

12. nextAtomic Structure

13. end if

14. if TP.predicate! = AtomicStructure.predicate

then

15. nextAtomicStructure

16. end if

17. if TP.object! = AtomicStructure.object then

18. nextAtomicStructure

19. end if

20. end for

21. the AtomicStructure matches the BGP, so we

can retrieve entities

22. resultBGP←GetEntities (AtomicStructure,BGP)

23. end for

24. results ←resultBGP

25. end for

26. SendToMasterNode (results)

27. end procedure

28. On the Master do Hash Join

V. ELEARNAPP

The ELearnAPP is a domain that consolidates

planning, building and evaluation of the

learning/educational process and covers the tools for

creating, arranging and consolidating content parts.

An improved structure of the ELearnAPP as an

essential part of the EP is shown in Figure 1, while

distinctive sorts of users are interacting with it. The

auxiliary units, interacting with each other, have

been given the name modules because the

environment does not claim to be equipped for

playing out every one of the capacities that can be

relegated to a very completely finished e-Learning

framework. In such a framework, similar units

perform essentially more complex functions and are

called specialists.

Volume%203,%20Issue%203%20|%20March-April-2018%20
http://www.ijsrcseit.com/

Volume 3, Issue 6, July-August-2018 | http:// ijsrcseit.com

P. Hariharan, et al. Int J S Res CSE & IT. 2018 July-August; 3(6) : 396-404

 402

The Learner profile module is in charge of making

and storing the profiles of the students (looked over

various choices or determined after some tests). The

module advances Students details to the repository

called User profiles. It is used to store the users'

identification details: user name, password, level,

objectives, interests, etc. The Data delivery module

serves as a mediator between the different EP

modules when there is an information search query.

Figure 4. ELearnAPP

The Searching module forms the queries. It does not

have direct access to the Repository and uses the

Listing module for the assets stored there. This

module is in charge of setting a extraordinary number

for every resource and in this manner encourages

their aggregation in the repository. The Learning

organization and Content management modules

support tasks identified with information control:

adding/deleting, updating and publishing. The main

module supports DL process structure (the

curriculum) and the second one – content of the

subjects in the Repository. The structure of the

materials in the Repository is hierarchically

organized: discipline, textbook (learning articles),

module, section, lesson (learning objects) and term

(information objects). The structure of the items and

the articles themselves with a few attributes should be

stored in separate files, in order to accelerate the

processing, to achieve a greater independence and

security of the data. For the students the content of

every exercise ought to be spoken to by methods for a

standard internet browser. At the point when a client

picks the web address of the EP, the questions of the

program he/she utilizes are gotten and handled by the

server. It advances them to the LCMS, which figures

out what could possibly be done that.

VI. RESULT

6.1 SCREENSHOT

Figure 5. Add Course Details

Figure 6. Student Registrations

Volume%203,%20Issue%203%20|%20March-April-2018%20
http://www.ijsrcseit.com/

Volume 3, Issue 6, July-August-2018 | http:// ijsrcseit.com

P. Hariharan, et al. Int J S Res CSE & IT. 2018 July-August; 3(6) : 396-404

 403

Figure 7. Hash Conversions

Figure 8: Create RDF Data

VII. CONCLUSIONS

MSQP is an efficient and adaptable framework for for

managing RDF data in the cloud. From our viewpoint

it strikes an optimal balance between intra-operator

parallelism and data co-location by considering

repeating, fine-grained physiological RDF partitions,

distributed data allocation schemes, leading however

to potentially bigger data (excess presented by higher

extensions or versatile AtomicStructures), to more

complex inserts, and updates. MSQP is especially

suited to clusters of commodity machines and cloud

environments where network latencies can be high,

since it deliberately attempts to avoid all complex and

distributed operations for query execution Our

exploratory assessment demonstrated that it positively

thinks about to best in class frameworks in such

conditions. We intend to keep creating MSQP in a

few bearings: First, we intend to incorporate some

further pressure systems. We intend to chip away at a

programmed Models revelation in light of incessant

examples and untyped components.

VIII. FUTURE ENHANCEMENT

In Future, we plan take a shot at integrating an

inference engine into MSQP to help a larger set of

semantic constraints and queries natively. At last, we

are as of now testing and extending our framework

with with a few accomplices keeping in mind the end

goal to oversee to a great degree vast scale,

disseminated RDF datasets about bioinformatics

applications

IX. REFERENCES

[1]. J. Huang, D. Abadi, and K. Ren. Scalable

SPARQL querying of large RDF graphs. In

VLDB, pages 1123–1134. ACM, 2011.

[2]. D. Kossmann. The state of the art in distributed

query processing. ACM Comput. Surv.,

32(4):422–469, 2000.

[3]. G. Ladwig and T. Tran. Linked data query

processing strategies. In ISWC, pages 453–469.

Springer, 2010.

[4]. A. Langegger, W. W¨oß, and M. Bl¨ochl. A

semantic web middleware for virtual data

integration on the web. In ESWC, pages 493–

507. Springer, 2008.

[5]. S. T. Leutenegger, J. M. Edgington, and M. A.

Lopez. STR: A simple and efficient algorithm

for R-Tree packing. In ICDE, pages 497–506.

IEEE Computer Society, 1997.

[6]. Y. Li and J. Heflin. Using reformulation trees to

optimize queries over distributed

Volume%203,%20Issue%203%20|%20March-April-2018%20
http://www.ijsrcseit.com/

Volume 3, Issue 6, July-August-2018 | http:// ijsrcseit.com

P. Hariharan, et al. Int J S Res CSE & IT. 2018 July-August; 3(6) : 396-404

 404

heterogeneous sources. In ISWC, pages 502–

517. Springer, 2010.

[7]. T. Neumann and G. Moerkotte. Characteristic

sets: Accurate cardinality estimation for RDF

queries with multiple joins. In ICDE, pages

984–994. IEEE Computer Society, 2011.

[8]. T. Neumann and G. Weikum. The RDF-3X

engine for scalable management of RDF data.

VLDB J., 19(1):91–113, 2010.

[9]. B. Quilitz and U. Leser. Querying distributed

RDF data sources with SPARQL. In ESWC,

pages 524–538. Springer, 2008.

[10]. K. Stocker, D. Kossmann, R. Braumandl, and A.

Kemper. Integrating semi-join-reducers into

state of the art query processors. In ICDE, pages

575–584. IEEE Computer Society, 2001.

[11]. China IDC, 2012. Data center power will

double in the next five years. Online].

Available:〈http://tech.idcquan.com/pro/34910.s

html〉 .(accessed 2016).

[12]. Do, J., Kee, Y.S., Patel, J.M., et al., 2013. Query

processing on smart SSDs: opportunities and

challenges. In: Proceedings of the 2013 ACM

SIGMOD International Conference on

Management of Data. ACM: New York. pp.

1221–1230.

[13]. Dokeroglu, T., Bayir, M.A., Cosar, A., 2015.

Robust heuristic algorithms for exploiting the

common tasks of relational cloud database

queries. Appl. Soft Comput. 30 (C), 72–82.

[14]. Global action plan, 2007. An inefficient truth.

Global action plan report. Online]. Available:

http://www.global action

plan.org.uk/〉.(accessed 2016).

[15]. Graefe, G., 2008. Database servers tailored to

improve energy efficiency. In: Proceedings of

the 2008 EDBT workshop on Software

engineering for tailor-made data management.

New York: ACM. pp. 24–28.

[16]. D. Meisner, C. M. Sadler, L. A. Barroso, W.-D.

Weber, and T. F. Wenisch, "Power

management of online data-intensive services,"

in Proc. ISCA, 2011, pp. 319–330.

[17]. C. D. Manning, P. Raghavan, and H. Sch¨utze,

Introduction to Information Retrieval.

Cambridge University Press, 2008.

[18]. M. Catena, C. Macdonald, and I. Ounis, "On

inverted list compression for search engine

efficiency," in Proc. ECIR, 2014, pp. 359–371.

[19]. J. Dean, "Challenges in building large-scale

information retrieval systems: Invited talk," in

Proc. WSDM, 2009.

[20]. S. Robertson and H. Zaragoza, "The

Probabilistic Relevance Framework: BM25 and

Beyond," Found. Trends Inf. Retr., vol. 3, no. 4,

pp. 333–389, Apr. 2009.

Volume%203,%20Issue%203%20|%20March-April-2018%20
http://www.ijsrcseit.com/

