
CSEIT18375 | Received : 01 Sep 2018 | Accepted : 08 Sep 2018 |  September-October -2018  [ 3 (7) : 235-241 ] 

International Journal of Scientific Research in Computer Science, Engineering and Information Technology 

© 2018 IJSRCSEIT | Volume 3 | Issue 7 | ISSN : 2456-3307 

 
575 

Heuristic Correlative Features and Least Square Multi-Layer 

Perception on Software Process Improvement 
Dr. A. Saranya 

Assistant Professor, Department of Computer Application V.V.V College for Women, Virudunagar, Tamil Nadu, India  

 

ABSTRACT 

 

Successful software process in its own right not only has various favorable inferences for the software industry, 

but also the broad stakeholder group.As several software processes exists, it becomes difficult for the project 

managers to select optimal software process model from available software processes. Improper selection of 

software process not only increases the software development life cycle time, but also reduces the success rate. 

Therefore, it is necessary to introduce new and efficient technique to reduce the software development life 

cycle time with minimum user effort. In this paper, a new attribute based recommendation and machine 

learning technique called, Heuristic Correlative Features and Least Square Multi Layer Perceptron (HCF-

LSMLP) is proposed for helping the project managers to select the most suitable software projects among the 

existing software projects. This technique introduces a heuristic correlation based feature selection that reduces 

the software process development cycle time by constructing attributes based on top n recommendations 

without increasing the computational complexity. Moreover, the proposed HCF-LSMLP technique for suitable 

software project selection provides better performance in terms of true positive rate than the other existing 

techniques. Besides, the error on the software process selection is also tackled using the Least Square method in 

an efficient manner by minimizing the sum of squared residuals. The main advantage of the proposed technique 

is that it minimizes the software development life cycle time and improves the true positive rate.  

Keywords: Software Process, Attribute Based Recommendation, Machine Learning, Heuristic Correlative 

Features, Least Square, Multi Layer Perceptron 

 

I. INTRODUCTION 

 

In spite of its comparatively young age, the sub-field 

of Software Process Improvement has improved 

swiftly during the past two decades, with a growth of 

new research being published specifically through 

the previous fifteen years. Its value to the project 

manager community specifically in nurturing 

perception and consciousness has been immense and 

the field has become well established in the research 

literature.  

 

ArchReco, (a Software Architecture Design prototype 

tool, which supports Context-Aware 

recommendations for Design Patterns) was 

investigated in [1] by applying two types of context-

aware recommendations to assists users in increasing 

their skills related to design while training for High 

Level Software models. ArchReco used Semantic 

Web technologies, and Content based analysis for the 

evaluation of non-personalized recommendations for 

Design Patterns. This non-personalized 

recommendation in turn helped the users in 

identifying the most suitable Design Pattern on the 

http://ijsrcseit.com/


Volume 3, Issue 7, September-October-2018  |   http:// ijsrcseit.com  

 

Dr. A. Saranya  et al. Int J S Res CSE & IT. 2018 September-October-2018; 3(7) : 575-586 

 576 

basis of the working context, deriving the meaning, 

objectives and usages of each Design Pattern.  

 

ArchReco presented a Semantic Modeling of 

Software Design process and in specific the 

characterization of the Design Patterns as Ontology 

model. This in turn helped in improving the 

precision and recall rate of, with high percentage of 

relevant recommended Design Patterns and low 

selected (recall) value. Despite improvement in 

precision and accuracy while training for high level 

software models, prior knowledge of the users were 

not taken into account for evaluating 

recommendations. This in turn had negative impact 

on the software process development cycle time and 

therefore the success rate.  

 

To address the above said issues, in this work, 

attribute-based top ‘ ’ recommendations are made 

using the Heuristic Vector Correlation-based Feature 

Selection. Here, Heuristic Vector Correlation-based 

Feature Selection is investigated for evaluating 

recommendations. Based on the recommendations, 

relevant attributes are selected, therefore minimizing 

the dimensionality and in addition reducing the 

software process development cycle time. 

 

On the other hand, most prior software visualization 

(SV) research has concentrated mainly on building 

characteristic of abstract software product artefacts. 

While unquestionably useful, this cornerstone has 

revealed that software process visualization has 

experienced far less consciousness. Conceptual 

Visualization [2] approach, made the design based on 

the actual developers concepts and intentions using 

both notable sources of information in terms of 

software development and maintenance by 

combining the code artefacts with their actual 

functional and developmentaspects.  

 

As a result, the Conceptual Visualization approach 

assisted the developers and managers to investigate 

multiple characteristics of software product and 

process. Despite improvement in the most 

information rich impression software artefacts while 

visualizing software process, high involvement of 

developers and quality engineers were required who 

cannot model or identify to access hidden insights. 

This in turn affected thetrue positive rate or the rate 

of sensitivity, that measured the ratio of positives that 

are correctly identified as such (e.g. the percentage of 

most suitable software process which are correctly 

identified as having the condition). 

 

In this work, a machine learning technique called 

Multi Layer Perceptron updating the weight using 

Least Square is presented that requires minimal user 

effort in selecting software process model. Therefore, 

true positive rate is said to be increased with minimal 

user effort. The motivation of this work is based on 

the lack of software process improvement methods 

that support new designers and project managers in 

finding and applying software process in high level 

software models based on recommendations using 

Vector Correlation-based Feature and taking into 

account the recommendations made based on 

correlations.  

 

In the existing literature there are reported attempts 

to produce recommendations for software process 

improvement such as Design Patterns ArchReco, a 

Software Architecture Design prototype tool, that 

supports Context-Aware recommendations for 

Design Patterns [1] and Conceptual Visualization [2] 

approach but none of them was taking into account 

the recommendations made with minimal user effort 

which HCF-LSMLP supports. 

 

The rest of the paper is structured as follows: Section 

2 presents the motivation behind the selection for the 

current work by presenting the related work. Section 

3 presents the proposed Heuristic Correlative 

Features and Least Square Multi Layer Perceptron 

(HCF-LSMLP) technique. Section 4 provides the 

http://www.ijsrcseit.com/


Volume 3, Issue 7, September-October-2018  |   http:// ijsrcseit.com  

 

Dr. A. Saranya  et al. Int J S Res CSE & IT. 2018 September-October-2018; 3(7) : 575-586 

 577 

experimental setup followed by detailed discussion in 

Section 5. Finally, the concluding remarks are 

presented in Section 6.  

 

II. RELATED WORKS  

 

With the development of information technology, a 

completely new era has taken place in human life. 

Because of the evolution of informatics that people 

use software on every social activity, software has 

become a part of modern human civilization. Careful 

software process selection has hence become the 

need of the hour.  

 

Three different software development methods were 

compared in [3] with the objective of implementing 

project managers to select the right method. 

However, improper features being selected resulted 

in the increase in software development cycle time. 

To address this issue, dimensionality reduction was 

performed using feed forward artificial neural 

network [4]. Yet another simplified software process 

improvement framework was designed in [5] using 

Capability Maturity Model Integration.  

 

Software engineering and evolution is customary 

tosuffer from unexpected overtime that in turn 

results in stress and illness in project managers and 

can lead to poor software quality with higher bugs, 

therefore compromising the software being selected. 

Multi-objective approaches were applied in [6] for 

software process management. Software development 

models based on agile methods were investigated in 

[7] that in turn assisted project managers in executing 

their roles in software process selection.  

 

A systematic literature review was presented in [8] 

on predicting faults at an early stage. Yet another 

systematic literature review on software process 

improvement was investigated in [9]. A predictive 

performance method was designed in [10] using 

machine learning in software defect prediction.  

 

Requirements traceability is widely considered as the 

main constituent of any meticulous software 

developmentprocess specifically for constructing high 

andcritical software systems. In [11], traceability was 

utilized based on multi level Poisson regression 

analysis that in turn provided an evidence of decrease 

in the expected defect rate. A new high powered 

inheritance metrics for object oriented systems was 

designed in [12] for software quality assessment. A 

state of the art method for software process 

improvement was investigated in [13] based on 

systematic mapping study. Yet another method based 

on crowd sourcing approach was presented in [14] 

based on recommendation system to help software 

engineers in analyzing process management platform.  

 

In the current scenario, several of the software 

development organizations are applying the concept 

of Global Software Development(GSD), primarily due 

to the remarkable return on investment it initiates. 

Critical Success Factors and Critical Barriers were 

analyzed in [15] for making comprehensive 

understanding of software process improvement. Yet 

another software reliability model was investigated in 

[16] based on the Non Homogeneous Poisson Process 

(NHPP) that resulted in the improvement of fault 

removal efficiency.  

 

A comparative study of software process 

improvement was analyzed in [17]. The impacts of 

organizational culture and top management 

knowledge were critically analyzed by adopting the 

statistical technique of Partial Least Squares (PLS) in 

[18]. The impact of Personal Software Process (PSP) 

on software quality was analyzed in [19]. Software 

Testing Defect Corrective Model (STFCM) was 

designed in [20] with the core objective of increasing 

the quality without increasing the cost and time.  

 

http://www.ijsrcseit.com/


Volume 3, Issue 7, September-October-2018  |   http:// ijsrcseit.com  

 

Dr. A. Saranya  et al. Int J S Res CSE & IT. 2018 September-October-2018; 3(7) : 575-586 

 578 

III. METHODOLOGY  

 

In this work, a new technique named Heuristic 

Correlative Features and Least Square Multi Layer 

Perceptron (HCF-LSMLP) is presented. This HCF-

LSMLP technique is used to train high level software 

models based on the recommendation with minimal 

user or programmer effort by modifying the existing 

context aware recommendation methods [1] for 

effective selection of software process.  

 

The HCF-LSMLP technique provides various 

advantages such as minimum user effort, minimal 

software development life cycle time, low 

computational cost and complexity for identifying 

the software process and improved true positive 

rate.Figure 1 shows the block diagram of HCF-

LSMLP.  

 

 

 
Figure 1. Block diagram of Heuristic Correlative Features and Least Square Multi Layer Perceptron 

 

To start with pre-processing is performed using 

Heuristic Vector Correlation-based Feature Selection. 

Here, heuristic functions are used for arriving at the 

correlation between attributes and to find the top ‘ ’ 

recommendations based on the selected correlated 

attributes. Next, a novel machine learning technique, 

called Multi Layer Perceptron based on the weights 

using the Least Square is formulated. This HCF-

LSMLP has been implemented using JAVA platform 

and proved that the technique provides better 

performance when it is compared with the other 

existing techniques. The elaborate description of 

HCF-LSMLP technique is given below.  

 

1.1 Heuristic Vector Correlation-based Feature 

Selection 

In this section, Heuristic Vector Correlation-based 

Feature Selection is applied to the software repository. 

This is performedwith the objective of reducing the 

dimensionality and considering prior knowledge of 

the users while evaluating recommendations with 

respect to the relevant attributes being selected. 

 

With the application of more sophisticated user based 

heuristic analysis obtained on result of vector 

correlation recommendations and the user based 

feedback for the obtained recommendations, software 

process development cycle time is also said to be 

reduced in a significant manner.  Figure 2 shows the 

http://www.ijsrcseit.com/


Volume 3, Issue 7, September-October-2018  |   http:// ijsrcseit.com  

 

Dr. A. Saranya  et al. Int J S Res CSE & IT. 2018 September-October-2018; 3(7) : 575-586 

 576 

method for measuring the Heuristic Vector 

Correlation-based Feature Selection.  

 

 

 
Figure 2. Schematic diagram of Heuristic Vector Correlation-based Feature Selection 

 

 

The Heuristic Attribute Correlation-based Feature 

Selection is based on the perception that a useful 

attribute is one whose values differ consistently with 

user membership. This relationship between attribute 

and user is measured through correlation. Besides, an 

attribute is said to be competent only if it is not 

redundant. In other words, an attribute is said to be 

non-redundant only if it is not correlated with 

another attributes. Based on the above said 

requirements, a heuristic function is measured using 

the following formula. 

 

              ∑
      (    )

    (   )
 
    (1) 

 

From the above equation (1), the heuristic function 

for the software process ‘   ’ is evolved on the basis 

of the ‘  ’ attributes and the ratio of average 

correlation between each attribute ‘    (    )’ and 

the average correlation between attributes 

‘    (   )’ respectively.  

 

Besides, from the above equation, greater the 

relevance value in the numerator and lower the 

redundant value in the denominator, higher 

dimensionality reduction is said to be achieved with 

less effort on the user side. Here, ‘          ’, 

represents the Attribute-based top ‘  ’ 

recommendations, between programmer and 

attribute. This measures the similarity between 

programmers or attributes, with the main objective of 

making recommendations. The value of ‘         ’ is 

measured using the following formula, 

 

∑                     (          )           (2) 

 

http://www.ijsrcseit.com/


Volume 3, Issue 7, September-October-2018  |   http:// ijsrcseit.com  

 

Dr. A. Saranya  et al. Int J S Res CSE & IT. 2018 September-October-2018; 3(7) : 575-586 

 576 

From the above equation, ‘     ' denotes the set of 

top 'N' programmers (i.e. recommendations made by 

the programmer) that are most similar to 

programmer ‘    ’ who rated attribute ‘   ’. The 

pseudo code representation of Heuristic Attribute 

Correlative pre-processing is provided below.  

 

 

Algorithm 1. Heuristic Attribute Correlative pre-processing algorithm 

Input: Programmer ‘                   ’, Project attributes ‘                ’ 

Output: Pre-processed dimensionality reduced project attributes ‘          ’ 

1: Begin  

2:       For each Programmer ‘    ’ 

3:               For each Project attributes ‘   ’ 

4:                       Evaluate the heuristic function using equation (1) 

5:                       Evaluate Attribute-based top ‘ ’ recommendations using equation (2) 

6:               End for 

7:       End for  

8: End  

 

As provided in the above Heuristic Attribute 

Correlative pre-processing algorithm, for each 

software processes and attributes, the objective 

behind the above algorithm lies in extracting the 

dimensionality reduced attributes. To do this, 

recommendation methods according to the 

recommendations made by the programmer is made.  

 

With this goal, correlation measure is used to obtain 

the average correlation between each attributes and 

attributes respectively. Followed by this, a heuristic 

function is measured to arrive at the top ‘  ’ 

recommendations made by the programmers. With 

the top ‘  ’ recommendations arrived at, 

dimensionality reduced project attributes are 

obtained. Hence, using the dimensionality reduced 

project attributes, optimal software process is selected 

by the project managers at an early stage that in turn 

reduces the software project development cycle time 

and therefore resulting in the success rate.  

 

 

 

 

3.2 Least Square Multi Layer Perceptron 

In this section, with the pre-processed dimensionality 

reduced attributes, machine learning technique, i.e. 

Least Square Multilayer Perceptron that requires 

minimal user effort in selecting software process 

model is investigated. The objective behind the 

design of Least Square Multi Layer Perceptron 

technique is also to reduce the output errors on a 

particular set of training data (i.e. software processes) 

by adjusting the network weights ‘ ’ using Least 

Square method.  

 

Least Square Multi Layer Perceptron comprises of 

one or more hidden layers, one input and one output 

layer. Figure 3 given below, show the Multi Layer 

Perceptron with three hidden layers namely, 

‘       ’, ‘       ’ and ‘       ’.  

 

As illustrated in the above figure, the input layer or 

input neurons have ‘  ’ nodes or ‘    ’ software 

processes. No computation is required in the input 

layer, therefore, the outputs from software processes 

in the input layer are, ‘   ’, ‘     ’, ‘     ’, ‘   ’ 

respectively, that are fed into the Hidden Layer. 

http://www.ijsrcseit.com/


Volume 3, Issue 7, September-October-2018  |   http:// ijsrcseit.com  

 

Dr. A. Saranya  et al. Int J S Res CSE & IT. 2018 September-October-2018; 3(7) : 575-586 

 576 

 

 

Figure 3. Sample Multi Layer Perceptron with three layers 

 

Hence, the input vector that forms the Multi Layer 

Perceptron is formulated as given below. 

 

             (3) 

 

From the above equation (3), ‘ ’ represents the size of 

output vector ‘ ’, whereas, ‘ ’ represents the size of 

vector ‘   ( )’. 

 

   ( )   * ( )    ( ) ( ( ( )   ( ) ))+ (4) 

 

From the above equation (4), ‘  ’ represents the 

activation function, with ‘  ( ) ’ and ‘  ( ) ’ 

representing the bias vectors and ‘ ( )’ and ‘ ( )’ 

representing the weight matrices for the 

corresponding function ‘    ( ) ’. Now the hidden 

layer is evaluated as given below. 

 

 ( )    ( )   ( ( )   ( ) ) (5) 

 

From the above equation (5), ‘ ( ) ’, represent the 

weight matrix connecting input vector to hidden 

layer. In the proposed work, Learning happens in the 

perceptron by updating connection weights after 

each piece of data or software process is processed, 

based on the error rate in the output layer compared 

to the anticipated result. For estimating the optimal 

weights, Least Square method is used.  

 

The purpose of using the Least Square method in 

measuring the value of weight in the proposed work 

is that it is entirely free from personal prejudice of 

the programmer as it is very impartial in nature. The 

design of Least Square method comprises of altering 

the parameters ‘  ’ and ‘  ’, with ‘  ’ representing the 

independent variable and ‘   ’ representing the 

dependent variable so that error minimization is said 

to be achieved.  

 

The objective is to identify the parameter values for 

the Least Square Multi Layer Perceptron that results 

in error minimization. It is measured by its residual, 

defined as the difference between the actual value of 

the dependent variable and the predicted value and is 

mathematically represented as given below.  

 

          (    )  (6) 

 

http://www.ijsrcseit.com/
https://en.wikipedia.org/wiki/Errors_and_residuals_in_statistics


Volume 3, Issue 7, September-October-2018  |   http:// ijsrcseit.com  

 

Dr. A. Saranya  et al. Int J S Res CSE & IT. 2018 September-October-2018; 3(7) : 575-586 

 576 

Also in the above equation (5) and (6), ‘ ’ represent 

the tan h function. The purpose of using tan h 

function in the proposed work is the advantage of 

being computationally efficient or the computation 

time for training the test data converges at a faster 

rate. Hence the use of tan h function is made in the 

proposed work. The mathematical formulation for 

tan h is as given below.  

 

    ( )   
      

         (7) 

 

Finally, the optimal parameters are identified by 

minimizing the sum ‘  ’ of squared residuals: 

 

    ∑     
  

     (8) 

 

The pseudo code representation of Least Square Multi 

Layer Perceptron is given below. The following 

section shows how the outlined method improved 

the performance of Multi Layer Perceptronthat was 

trained using the Least Square Multi Layer 

Perceptron algorithm. 

 

 

Algorithm 2. Least Square Multi Layer Perceptron algorithm 

Input: pre-processed dimensionality reduced attributes ‘          ’ 

Output: Computationally efficient software process selection  

1: Begin 

2:       For each pre-processed dimensionality reduced attributes ‘          ’ 

3:                Obtain the input vector that forms the Multi Layer Perceptron using equation (3) 

4:                Obtain the hidden layer using equation (5) 

5:                Measure the residual value using the equation (6) 

6:                Compute the tan h function using equation (7) 

7:                Measure the least square using the equation (8) 

8:       End for  

9: End  

 

To start with, initially values are selected using the 

pre-processed dimensionality reduced attributes. 

Next, the input vector is determined based on the 

size of output vector ‘  ’. Then, the activation 

function in the hidden layer is determined using the 

tan h function. Finally, the networks are learnt using 

the Least Square method. This in turn reduces the 

error while selecting the software process. As a result, 

the true positive rate is improved, therefore 

improving the success rate of the software process 

being selected by the programmers.  

 

 

 

IV. EXPERIMENTAL SETUP  

 

The following five open-source programs from 

http://sourceforge.net are used to ensure optimized 

selection of software process by the project managers 

with minimal user effort based on the 

recommendations. The experiments are conducted 

using the following information provided in Table 1.  

 

 

 

 

http://www.ijsrcseit.com/
http://sourceforge.net/


Volume 3, Issue 7, September-October-2018  |   http:// ijsrcseit.com  

 

Dr. A. Saranya  et al. Int J S Res CSE & IT. 2018 September-October-2018; 3(7) : 575-586 

 576 

 

Table 1. Characteristics of software program code 

S. No Program Description 

1 faqforge a tool for creating and managing documents 

2 webchess an online chess game 

3 schoolmate a solution for administering elementary, middle 

and high schools 

4 time clock a web-based time clock system 

5 phpsysinfo an utility for providing the system information 

like CPU time, memory  and so on 

 

An effective software validation system using 

Heuristic Correlative Features and Least Square Multi 

Layer Perceptron (HCF-LSMLP) technique is 

developed to experiment the software process 

selection. The experiment is carried out in JAVA 

platform using the open-source programs extracted 

from http://sourceforge.net. The open-source 

programs from http://sourceforge.net are used to 

perform the experiment on the factors such as 

software process development cycle time, true 

positive rate, computational complexity and success 

rate.  

 

Software process development cycle time for HCF-

LSMLP technique measures the time taken to extract 

the relevant and dimensionality reduced attributes 

‘    (  )’ and the size of the software program code 

‘     (   ) ’ using the heuristic function. It is 

mathematically formulated as given below.  

 

      ∑     (  )
 
        (   ) (9)

  

From the above equation (9), the software process 

development cycle time ‘    ’ is measured in terms 

of milliseconds. Lower the time taken to extract the 

dimensionality reduced attributes, lower the software 

process development cycle time. Therefore, the 

software process is selected amongst the available 

software processes at a faster rate.  

 

True positive rate or sensitivity of a test is defined as 

the ratio of software process model properly selected 

by the project manager. In other words, a highly 

sensitive or true positive test is one that correctly 

identifies the software process to be used.  

     ∑
   

   (   )
 
     (10) 

 

From the above equation (10), the true positive rate 

‘   ’ is arrived at, using the number of true positives 

made ‘   ’ to the total number of software processes 

ready for testing ‘   (   )’. Higher the true positive 

rate, greater is the possibility for correct software 

process being selected from the available software 

processes. It is measured in terms of percentage (%).  

 

Computational complexity or computational time 

refers to the time taken to perform software process 

selection. It is mathematically formulated as given 

below.  

 

      ∑         (   [   ])
 
    (11) 

 

From the above equation (11), the computational 

time ‘  ’, is measured on the basis of number of 

software processes ‘    ’ and the time taken for 

http://www.ijsrcseit.com/
http://sourceforge.net/
http://sourceforge.net/


Volume 3, Issue 7, September-October-2018  |   http:// ijsrcseit.com  

 

Dr. A. Saranya  et al. Int J S Res CSE & IT. 2018 September-October-2018; 3(7) : 575-586 

 41 

software process selection ‘     (   [   ]) ’. It is 

measured in terms of milliseconds (ms).  

 

Discussion  

The result analysis of Heuristic Correlative Features 

and Least Square Multi Layer Perceptron (HCF-

LSMLP) technique using software programs extracted 

from http://sourceforge.netis compared with existing 

ArchReco [1] and Conceptual Visualization [2] 

approach to select optimal software process with 

minimal user effort. The first set of experiments is 

performed for software process development cycle 

time. 

 

The software process development cycle time using 

HCF-LSMLP refers to the time taken to perform 

software process development with respect to the 

software program code. It is represented in terms of 

milliseconds (ms). The sample calculation for HCF-

LSMLP and the existing ArchReco [1] and 

Conceptual Visualization [2] is provided below.  

 

Sample calculation  

 Proposed HCF-LSMLP: With size of the 

software program code being ‘     ’ and time 

taken to extract dimensionality reduce 

attributes being ‘       ’, the software process 

development cycle time is measured as given 

below.  

 

                          

 

 ArchReco: With size of the software program 

code being ‘     ’ and time taken to extract 

dimensionality reduce attributes being 

‘       ’, the software process development 

cycle time is measured as given below.  

  

                          

 

 Conceptual Visualization: With size of the 

software program code being ‘     ’ and time 

taken to extract dimensionality reduce 

attributes being ‘       ’, the software process 

development cycle time is measured as given 

below.  

                          

 

Figure 4 reports the software process development 

cycle time with software program code size in the 

range of 500MB to 5000MB from webchessextracted 

from http://sourceforge.net.  

 

As illustrated in the figure, the horizontal ‘ ’ axis 

represents the software program code and the vertical 

‘ ’ axis represents the software process development 

cycle time. The x axis is represented in terms of 

megabyte (MB), whereas the y axis is represented in 

terms of milliseconds (ms). As depicted in the figure, 

the software process development cycle time is 

reduced in HCF-LSMLP due to the identification of 

correlation between the attributes from different 

software process.With this identified correlations, 

attribute-based top ‘ ’ recommendations were made. 

This in turn extracted the dimensionality reduced 

attributes at a faster rate. 

 
Figure 4. Comparison of software process 

development cycle with respect to software program 

code using HCF-LSMLP, ArchReco [1] and Concept 

Visualization [2] 

 

Due to this, the software process development cycle 

time is reduced by 37% compared to ArchReco [1]. 

Besides, by applying the heuristic function based on 

the recommendations, with greater relevance value 

http://www.ijsrcseit.com/
http://sourceforge.net/
http://sourceforge.net/


Volume 3, Issue 7, September-October-2018  |   http:// ijsrcseit.com  

 

Dr. A. Saranya  et al. Int J S Res CSE & IT. 2018 September-October-2018; 3(7) : 575-586 

 42 

and lesser redundant value, the in the software 

process development cycle time is reduced by 55% 

compared to Conceptual Visualization [2].  

 

The second set of experiments is conducted for true 

positive rate. The true positive rate here refers to the 

correct identification of the software process by the 

project managers at an early stage with minimal user 

effort. It is represented in terms of percentage (%). 

The sample calculation for HCF-LSMLP and the 

existing ArchReco [1] and Conceptual Visualization 

[2] is provided below.  

 

Sample calculation  

 

 Proposed HCF-LSMLP: With the number of 

software processes ready for testing being ‘  ’ 

and the number of true positives being ‘ ’, the 

true positive rate is measured as given below.  

     
 

  
         

 ArchReco: With the number of software 

processes ready for testing being ‘  ’ and the 

number of true positives being ‘ ’, the true 

positive rate is measured as given below.  

     
 

  
         

 Conceptual Visualization: With the number of 

software processes ready for testing being ‘  ’ 

and the number of true positives being ‘ ’, the 

true positive rate is measured as given below.  

     
 

  
         

 

Figure 5 reports the true positive rate with software 

process in the range of 10 to 100 using webchess 

extracted from http://sourceforge.net.  

 

 

 
Figure 5. Comparison of true positive rate with 

respect to software process using HCF-LSMLP, 

ArchReco [1] and Concept Visualization [2] 

 

As illustrated in the figure, the horizontal ‘ ’ axis 

represents the software process available and the 

vertical ‘  ’ axis represents the true positive rate 

measured using HCF-LSMLP, ArchReco [1] and 

Concept Visualization [2]. From the figure it is 

evident that with the increase in the number of 

available software process, the software process 

development cycle time is increased and therefore 

true positive rate is said to be decreasing. 

Comparatively better performance improvement 

observed when applied with HCF-LSMLP than [1] 

and Concept Visualization [2]. This is because of the 

application of Least Square Multi Layer Perceptron 

algorithm that initially, performs multi layer 

perceptrons using the pre-processed attributes. As a 

result, the size of attributes present in each software 

process is reduced. This in turn helps in identifying 

the correct software process amongst the available 

software processes using HCF-LSMLP by 12% 

compared to ArchReco [1]. Also, the convergence 

graph is not said to be linear using all the three 

techniques. This is because of the differing software 

process size and therefore non-linearity of 

convergence graph. The weights in the heuristic 

function are updated by applying the least square that 

possess the advantage of identifying the best software 

http://www.ijsrcseit.com/
http://sourceforge.net/


Volume 3, Issue 7, September-October-2018  |   http:// ijsrcseit.com  

 

Dr. A. Saranya  et al. Int J S Res CSE & IT. 2018 September-October-2018; 3(7) : 575-586 

 43 

process for a dataset providing a visual demonstration 

between the software processes. As a result, the true 

positive rate using HCF-LSMLP is improved by 28% 

compared to Concept Visualization [2]. 

 

The third set of experiments is conducted for 

computational complexity or computational time. 

The computational time here refers to the time taken 

to select optimal software process with minimal user 

effort. It is represented in terms of milliseconds (ms). 

The sample calculation for HCF-LSMLP and the 

existing ArchReco [1] and Conceptual Visualization 

[2] is provided below.  

 

Sample calculation  

 

 Proposed HCF-LSMLP: With the number of 

software processes ready for testing being ‘  ’ 

and the time of selecting one software process 

being ‘        ’, the computational time is 

measured as given below.  

                     

 ArchReco: With the number of software 

processes ready for testing being ‘  ’ and the 

time of selecting one software process being 

‘       ’, the computational time is measured 

as given below.  

                     

 Conceptual Visualization: With the number of 

software processes ready for testing being ‘  ’ 

and the time of selecting one software process 

being ‘        ’, the computational time is 

measured as given below.  

                     

 

Figure 6 reports the computational time with respect 

to software process in the range of 10 to 100 using 

webchess extracted from http://sourceforge.net.  

 

 

 
Figure 6 .Comparison of computational time with 

respect to software process using HCF-LSMLP, 

ArchReco [1] and Concept Visualization [2] 

 

As illustrated in the figure, the computational time 

first increases with the increase in the number of 

software process. By applying HCF-LSMLP, with the 

software process from 10 to 50, there was an increase 

in the computational time for obtaining the optimal 

software process with minimal user effort. On the 

other hand, by applying ArchReco, with the software 

process from 10 to 60, there was an increase in the 

computational time and similarly when applied with 

Concept Visualization, with the software process 

from 10 to 40, an increase in the computational time 

was said to be observed. A swift decrease was then 

observed using all the three techniques. This is 

because, with the increase in the software process 

size, software process development cycle time 

increases and as a result, the computational time 

involved in identifying the software process amongst 

the available software processes also increases. 

However, a swift improvement is observed by 

applying HCF-LSMLP. This is because by updating 

the weights by applying the least square while 

training multi layer perceptrons, the computation 

time for training the test data converges at a faster 

rate. This in turn reduces the computational time by 

applying HCF-LSMLP with 24% compared to 

ArchReco and 42% compared to Concept 

Visualization.  

http://www.ijsrcseit.com/
http://sourceforge.net/


Volume 3, Issue 7, September-October-2018  |   http:// ijsrcseit.com  

 

Dr. A. Saranya  et al. Int J S Res CSE & IT. 2018 September-October-2018; 3(7) : 575-586 

 44 

V. CONCLUSION  

 

Software process selection amongst the available 

software processes with minimal user effort is one of 

the most pre requisite for project managers for 

making an effective software processes model in 

software engineering. Indeed, many techniques have 

been regularly being investigated by several research 

persons. However, while investing with high level 

software models during software process selection 

hinders the overall performance. In this work, 

Heuristic Correlative Features and Least Square Multi 

Layer Perceptron (HCF-LSMLP) technique is 

presented. The main contribution of the work is that 

it reduces the software process development cycle 

time using the Heuristic Vector model. Here, the 

relevant attributes for any software process is selected 

on the basis of the correlation between software 

processes. The design of Heuristic Attribute 

Correlative pre-processing algorithm in HCF-LSMLP 

technique top ‘ ’ recommendations made by the 

programmers were used. Dimensionality reduced 

attributes was obtained by applying Heuristic 

Attribute Correlative pre-processing algorithm. 

Finally, the Multi Layer Perceptron extended with 

Least Square for updating the weight improves the 

true positive rate and therefore the success rate 

resulting in effective outcome. Experiments 

conducted using JAVA reveals the efficiency of the 

proposed technique in terms of software process 

development cycle time, true positive rate and 

computational time compared to the state-of-the-art 

works.  

VI. REFERENCES 

 

[1]. George A. Sielis, Aimilia Tzanavari and George 

A. Papadopoulos, "ArchReco: a software tool to 

assist software design based on context aware 

recommendations of design patterns", Journal 

of Software Engineering Research and 

Development, Springer, May 2017 

[2]. Mujtaba Alshakhouri, Jim Buchan, Stephen G. 

MacDonell, "Synchronised visualisation of 

software process and product artefacts: 

Concept, design and prototype 

implementation", Information and Software 

Technology, Elsevier, Jan 2018 

[3]. Suryanto Nugroho, Sigit Hadi Waluyo, Luqman 

Hakim, "Comparative Analysis of Software 

Development Methods between Parallel, V-

Shaped and Iterative", International Journal of 

Computer Applications (0975 – 8887) Volume 

169 – No.11, July 2017 

[4]. D. Peteiro-Barral, V. Bolón-Canedo, A. Alonso-

Betanzos, B. Guijarro-Berdiñas, N. Sánchez-

Maroño, "Toward the scalability of neural 

networks through feature selection", Expert 

Systems with Applications, Elsevier, June 2012 

[5]. Delroy A. Chevers, Annette M. Mills, Evan W. 

Duggan & Stanford E. Moore, "Toward a 

Simplified Software ProcessImprovement 

Framework for Small SoftwareDevelopment 

Organizations", Journal of Global Information 

Technology Management, Taylor and Francis 

Group, June 2017 

[6]. Federica Sarro, Filomena Ferrucciy, Mark 

Harman, Alessandra Mannay, Jian Ren, 

"Adaptive Multi-objective Evolutionary 

Algorithmsfor Overtime Planning in Software 

Projects",  IEEE Transactions on Software 

Engineering, Volume 43, Issue 10, Oct. 1 2017  

[7]. Rashina Hoda, James Noble, and Stuart 

Marshall, "Self-Organizing Roles onAgile 

Software Development Teams", IEEE 

Transactions on Software Engineering, VOL. 

39, NO. 3, MARCH 2013 

[8]. Tracy Hall, Sarah Beecham, David Bowes, 

David Gray, and Steve Counsell, "A Systematic 

Literature Review onFault Prediction 

Performancein Software Engineering", IEEE 

Transactions on Software Engineering, VOL 38, 

NO 6, NOVEMBER/DECEMBER 2012 

http://www.ijsrcseit.com/


Volume 3, Issue 7, September-October-2018  |   http:// ijsrcseit.com  

 

Dr. A. Saranya  et al. Int J S Res CSE & IT. 2018 September-October-2018; 3(7) : 575-586 

 45 

[9]. Michael Unterkalmsteiner, Tony Gorschek, 

A.K.M. Moinul Islam, Chow Kian Cheng, 

Rahadian Bayu Permadi, and Robert Feldt, 

"Evaluation and Measurementof Software 

Process Improvement—A Systematic Literature 

Review", IEEE Transactions on Software 

Engineering, VOL. 38, NO. 2, MARCH/APRIL 

2012 

[10]. Martin Shepperd, David Bowes, and Tracy Hall, 

"Researcher Bias: The Use of Machine 

Learningin Software Defect Prediction", IEEE 

Transactions on Software Engineering, VOL. 

40, NO. 6, JUNE 2014 

[11]. Patrick Rempel and Parick Mader, "Preventing 

Defects: The Impact of 

RequirementsTraceability Completeness on 

Software Quality", IEEE Transactions on 

Software Engineering (Volume: 43, Issue: 8, 

Aug. 1 2017) 

[12]. Neha Gehlot and Jagdeep Kaur, "Dynamic 

inheritance coupling metric-design andanalysis 

for assessing reusability", Int. J. Software 

Engineering, Technology and Applications, 

Vol. 1, No. 1, 2015 

[13]. Marco Kuhrmann, Philipp Diebold and Jürgen 

Münch, "Software process improvement: 

asystematic mapping study on the stateof the 

art", Peer J Computer Science, May 2016 

[14]. Mushtaq RazaJoão Pascoal Faria, Luis 

AmaroPedro Castro Henriques, 

"WebProcessPAIR: Recommendation System 

for Software ProcessImprovement", ACM, July 

2017 

[15]. Arif Ali Khan, Jacky Keung,Shahid Hussain, 

Mahmood Niazi, Muhammad Manzoor 

IlahiTamimy, "Understanding Software Process 

Improvement in GlobalSoftware Development: 

A Theoretical Framework ofHuman Factors", 

ACM Symposium on AppliedComputing, 

Copyright 2017 

[16]. Qiuying Li, Hoang Pham, "A testing-coverage 

software reliability modelconsidering fault 

removal efficiency and errorgeneration", PLOS 

ONE | 

https://doi.org/10.1371/journal.pone.0181524 

July 27, 2017 

[17]. Mahmood Niazi, "A comparative study of 

software process improvementimplementation 

success factors", John Wiley & Sons Limited, 

Aug 2015 

[18]. Jung-Chieh Lee, Yih-Chearng Shiue, Chung-

Yang Chen, "Examining the impacts of 

organizational culture and top management 

support of knowledge sharing on the success of 

software process improvement", Computers in 

Human Behavior, Elsevier, Sep 2015 

[19]. Fernanda Grazioli, Diego Vallespir, Leticia 

Pérez, and SilvanaMoreno, "The Impact of the 

PSP on Software Quality: Eliminatingthe 

Learning Effect Threat through a Controlled 

Experiment", Hindawi Publishing 

CorporationAdvances in Software 

EngineeringVolume 2014 

[20]. K. Karnavel and R. Dillibabu, "Development 

and Application of New Quality Model 

forSoftware Projects", Hindawi Publishing 

Corporation, The Scientific World 

JournalVolume 2014 

 

http://www.ijsrcseit.com/

