
 CSEIT183782 | Received : 15 Oct 2018 | Accepted : 28 Oct 2018 | September-October - 2018 [3 (7) : 390-394]

International Journal of Scientific Research in Computer Science, Engineering and Information Technology

© 2018 IJSRCSEIT | Volume 3 | Issue 7 | ISSN : 2456-3307

390

Comparative Study of Apache Hadoop vs Spark
Varsha KR

 Department of Computer Science and Engineering, RV College of Engineering Bangalore, Karnataka, India

ABSTRACT

The paper focuses on analyzing the differences and comparative study of two most talked about frameworks –

Hadoop and Spark – both of which have increasing potential for the big data management. The analysis is

carried out regarding components, design, data storage, recovery from failure among other features.

Comparative analysis is made by executing certain algorithms on two platforms and comparing the execution

time. Similarly, suitability of frameworks for different scenarios is discussed.

Keywords : Hadoop, Spark, Map-Reduce, HDFS

I. INTRODUCTION

Spark is being shown to be 100x faster compared to

Map-Reduce of Hadoop. But, originally, Spark was

created with the intention of being used as an

extension of the existing Hadoop framework. Hadoop

is an environment or an ecosystem in which

processing on big data can be done whereas Spark is

an application which provides an interface to process

big data. Spark requires a file system like the HDFS to

store data. The objective of the paper to find

differences between Hadoop and Spark is between

two computing paradigms Hadoop MapReduce and

Spark.

Definitions

As defined by Apache Foundation-

Hadoop - The Apache Hadoop software library is a

framework that allows for the distributed processing

of large data sets across clusters of computers using

simple programming models.

Spark - Apache Spark is a fast and general engine that

enables users to run large-scale data analytics

applications across clustered systems.

MapReduce – MapReduce is a procure employed by

Hadoop where data processing happens in two stages

– Map and reduce. Map phase involves distributing

the dataset across various nodes where computation/

processing is performed independently for each

divided portion of the data. Reduce phase involves

combining results obtained in all nodes using a

corresponding ‘Join’/reduce operation.

II. BASIC COMPONENTS

The basic components making up these two

frameworks gives the basic difference between the

two.

Hadoop is composed of four modules:

a) Hadoop Common - libraries and utilities

b) Hadoop Distributed File System (HDFS) - a

distributed file system

c) Hadoop YARN - a resource-management system

d) Hadoop MapReduce - large scale data processing,

and computing framework

http://ijsrcseit.com/

Volume 3, Issue 7, September-October-2018 | http:// ijsrcseit.com

Varsha KR et al. Int J S Res CSE & IT. 2018 September-October-2018; 3(7) : 390-394

 391

Spark is composed of :

a) Cluster Manager - Standalone, Hadoop Yarn,

Apache Mesos

b) Distributed File system - HDFS

c) Computing framework - Spark itself is the

computing framework and unlike Hadoop is not

an ecosystem.

d) Library - Spark SQL, Spark Streaming, MLLib,

Graph X

III. COMPARISION OF FEATURES

A. Implementation and Infrastructure

In 2014, there was a contest Daytona Gray Sort

measuring how fast a system can sort 100 TB of data

(1 trillion records). Spark used 206 AWS EC2

machines and sorted 100 TB of data on disk in a

meager time of 23 minutes. The previous record was

held by MapReduce, it used 2100 machines and took

72 minutes. Spark did the same thing as MapReduce,

but only 3 times faster on 10 times fewer hardware.

Product Hadoop Spark

Implementation Ecosystem Compute engine

Resource

Management

Hadoop YARN Standalone, YARN,

Mesos

Library Hadoop

Common

MLLib, GraphX,

Streaming,

SparkSQL

File system HDFS HDFS, Cassandra,

Amazon S3

Computing

framework

MapReduce Spark

Execution unit Process Thread

Data model Key, Value (Java

object)

Key, Value (RDD)

Intermediate

data handling

Disc/Local (and

network)

Spark

collectives(network)

Language Java Scala (runs on java

VM)

B. Design

The design of these two frameworks is analyzed in

two phases: Map and Reduce. The differences can be

noted in the table as follows:

Hadoop Spark

Map Phase

Each Map task produces

(key, Value) pairs which

is stored in Circular buffer

(around 100MB)

The output is written to

OS Buffer cache.

Data is spilled to disk

when buffer is 80% full

OS decides when data is

spilled to disk.

On a particular node,

many map tasks are run

and many spill files are

created. Hadoop merges

all the spill files, on a

node, into one big file

which is sorted and

partitioned based on

number of reducers.

Each map task creates as

many shuffle spill files as

number of reducers.

SPARK doesn't merge and

partition shuffle spill files

into one big file. the map

tasks which run on the

same cores will be

consolidated into a single

file.

Reduce phase

Pushes the

intermediate/spill files to

memory

Pulls spill files to reduce

side

If buffer reaches 70%,

data is spilled to disk

Data written to memory

directly

Spills are merged If data doesn't fit OOM

exception is thrown

(before 0.9)

Reduce method called Reducer method called

Volume%203,%20Issue%207,%20September-October-2018%20
http://www.ijsrcseit.com/

Volume 3, Issue 7, September-October-2018 | http:// ijsrcseit.com

Varsha KR et al. Int J S Res CSE & IT. 2018 September-October-2018; 3(7) : 390-394

 392

C. Data Storage model

Data in Hadoop is distributed across several data

nodes. Files are split into blocks each of 64 or 128

MB. These blocks are replicated (standard 3 nodes).

Name node stores metadata i.e. details about blocks

making up a file and location of blocks.

Spark integrates with many systems like HDFS

(explained above), Cassandra, HBase etc. The main

abstraction Spark provides is a resilient distributed

dataset (RDD). RDDs are a 'immutable resilient

distributed collection of records' which can be stored

in the volatile memory or in a persistent storage. All

processing of data happens on RDDs and

transforming them. All data flow happens in-memory

except at t2 where there is insufficient space so it is

stored on disk.

Whereas in case of MapReduce, all data flow happens

through disk and at each step data is stored on disk

with copious amounts of reading and writing.

D. Recovery from Failure

In case of Hadoop, if a node fails, then the task

Tracker on that node stops sending heartbeats to Job

Tracker (frequency 3s). The JT which checks the

heartbeat every 200s declared the node to be dead if

no heartbeat is received for 600s. The data that is

stored on that node is recreated from the other two

nodes having the same data. In Spark internally

records every transformation that was applied to

build the RDD into a Direct Acyclic Graph (DAG)

called lineage. On failure of any part, it is recreated

following the DAG data flow. Recovery happens via

Write ahead logs if the system fails during an

operation. Here, the intention of the operation is first

written down into a durable log, and then the

operation is applied to the data. On failure, system

can recover by reading the log and reapplying the

operations it had intended to do.

E. Spark without Hadoop

Spark doesn’t require Hadoop to run. If we are not

reading the data from HDFS, Spark can run on its

own. There are many other storages such as S3,

Cassandra, etc., from which Spark can read and write

data. Under this architecture, Spark runs in stand-

alone mode not requiring Hadoop components in any

way.

IV. ANALYSIS OF EXECUTION OF PROGRAMS

A. Machine Learning Algorithms

Hadoop Map Reduce seems to be inefficient to run

applications which reuse a working set of data

repeatedly as in cases of iterative algorithms and

interactive data mining.

The spark framework takes an edge off with efficient

implementation of machine learning procedures for

most ML algorithms run on the same data set

iteratively and in MapReduce, there is no effortless

way to communicate a shared state from iteration to

iteration. Some attempts to run ML on Hadoop and

Spark and their comparison was done by UC,

Berkeley with page rank, logistic regression and k-

means clustering. The obtained results strongly

proved that Spark with its MLLib is an excellent

framework for ML algorithms and the its efficiency is

far greater than the traditional procedure done on

Hadoop.

The fundamental idea here is that of the fine grained

mutable state offered by Hadoop is a very low-level

abstraction. Here, with the writable interface

associated with <key, value> pairs the datatype needs

to be mutable to participate in the serialization/de-

serialization process. This design was done, perhaps

to reduce the amount of garbage objects. Mutable

means that there are updates, so it's possible for

different replicas of a piece of data to become

inconsistent. But on the other hand, Spark's coarse

grained immutable data as RDDs offer a higher level

Volume%203,%20Issue%207,%20September-October-2018%20
http://www.ijsrcseit.com/

Volume 3, Issue 7, September-October-2018 | http:// ijsrcseit.com

Varsha KR et al. Int J S Res CSE & IT. 2018 September-October-2018; 3(7) : 390-394

 393

of abstraction as one operation is applied to an entire

dataset saving the number of operations or functions.

The following algorithms were run both on Hadoop

and Spark and the results obtained as follows:

B. Interactive Analytics

MapReduce initially supported only two operations-

map and reduce. But interactive analytics requires a

greater number of steps. There is also a non-

availability of communication between shared states.

There exist solutions to these like cascading or the

usage of elevated level SQL languages. But these too

involve multiple steps and thus cannot achieve the

required latency.

On the contrary, Spark allows caching of data and

operates on in-memory RDDs. There exists a common

location of shared data which can be used

interactively till the end of the session. Hence

interactive analytics can be achieved at extensively

greater speeds compared to many step data extractions

from data-nodes in MapReduce.

C. Batch processing and stream processing

Hadoop's MapReduce is a batch processing

framework on Hadoop ecosystem. Spark is also a

batch processing framework originally but it includes

a library which can be used for streaming called

Spark Streaming. Batch processing is very efficient in

processing high volume data. Where data is collected,

entered to the system, processed and then results are

produced in batches. In contrast, stream processing

involves continual input and outcome of data. It

emphasizes on the Velocity of the data. Data must be

processed within small time period or near real time

Streaming processing gives decision makers the

ability to adjust to contingencies based on events and

trends developing in real-time

D. Real Time Processing

Real time processing involves the ability of the

system to respond and react to real time stimuli. Data

must be processed fast so that the enterprise using the

system can estimate changing conditions and take

decisions accordingly. It has application in Network

monitoring, intelligence and surveillance, risk

management, e-commerce, fraud detection, smart

order routing, transaction cost analysis, pricing and

analytics, market data management, algorithmic

trading, data warehouse augmentation among others.

Real time processing requires system to be

operational 24X7 and efficient recovery from failures.

As Spark streaming is built on Spark with RDD

abstraction and a feature to have write ahead

logs(journal) exhibits a potential recovery

mechanism. Yahoo uses Spark for personalizing news

pages for web visitors and for running analytics for

advertising. Conviva uses Spark Streaming to learn

network conditions in real time. Hadoop like

streaming is not a powerful system for real-time

processes. It uses Apache Flume for data streaming

and Apache Storm for real time, event stream

processing.

V. OTHER PARAMETERS FOR COMPARISION

A. Use cases

There are a few cases in which Hadoop MapReduce

out performs, those which do not involve much of

Volume%203,%20Issue%207,%20September-October-2018%20
http://www.ijsrcseit.com/

Volume 3, Issue 7, September-October-2018 | http:// ijsrcseit.com

Varsha KR et al. Int J S Res CSE & IT. 2018 September-October-2018; 3(7) : 390-394

 394

communication and iterations. The biggest advantage

that Hadoop MapReduce may have is if the data size

is bigger than memory, then Spark can't leverage the

cache and might be even slower than MapReduce’s

batch processing with more disk hits. For instance,

ETL type computations where result sets are large

and may exceed aggregate RAM of the cluster by an

order of magnitude.

B. Security

In case of Hadoop, it uses Kerberos SPNEGO for

security. By default, Hadoop is in non-secure mode.

To run in secure mode, kinit commands of Kerberos

is used. The filter then delegates to Authentication

handler, obtains authentication token and sets a

signed cookie. For clients, the signed cookie and its

validity is verified, information is extracted and then

sent to target. Spark supports authentication via a

shared secret. It sends request to Authentication

server through SSH whereas Hadoop MapReduce

communications are configured to use HTTPS. A

difference with Spark is that each subsequent request

to the API must include a token and be properly

signed.

VI. CONCLUSION

Spark overtakes Hadoop when it comes to

performance and ease of coding but it sure cannot

replace it completely as there are many use cases of

Hadoop MapReduce owing to its security and ability

of batch processing.

VII. REFERENCES

1. Verma Ankush, Mansuri Ashik Hussain, Jain

Neelesh, "Big Data Management Processing

with Hadoop MapReduce and Spark

Technology: A Comparison", 2016 Symposium

on Colossal Data Analysis and Networking

(CDAN).

2. S Humbetov, "Data-intensive computing with

map-reduce and hadoop", International

Conference on Applcation of Information and

Communication Technologies, pp. 1-5, 17-

190ct. 2012.

3. Polato Ivanilton, R Reginaldo, Goldman

Alfredo, Kon Fabio, "A comprehensive view of

Hadoop research-A systematic literature

review", Journal of Network and Computer

Applications, vol. 46, pp. 1-25, November 2014.

4. online] Available:

http://spark.apache.hadoop.org/.

5. online] Available:

http://spark.apache.org/docs/latest/mllib-Iinear-

methods.html.

Volume%203,%20Issue%207,%20September-October-2018%20
http://www.ijsrcseit.com/

