
CSEIT184187 | Received : 01 April 2018 | Accepted : 10 April 2018 | March-April-2018 [(4) 2 : 494-500]

International Journal of Scientific Research in Computer Science, Engineering and Information Technology

© 2018 IJSRCSEIT | Volume 4 | Issue 2 | ISSN : 2456-3307

494

Database Encryption Using TSFS Algorithm

J. Raja Sekhar1 , G. Sivaranjani 2
1Student, Department of Computer Science, Rayalaseema Institute of Information and Management

Sciences, Tirupati, India
2Associate Professor, Department of Computer Science, Rayalaseema Institute of Information and

Management Sciences, Tirupati , India

ABSTRACT:

Security of databases has become increasingly crucial in all application areas. Database encryption is

an important mechanism to secure databases from attacks and unauthorized access. The

Transposition-Substitution-Folding-Shifting encryption algorithm (TSFS) is a symmetric database

encryption algorithm that uses three keys with an expansion technique to provide high security: it

improves the efficiency of query execution time by encrypting the sensitive data only. However, it

applies merely for the alphanumeric characters. This paper extends the data set of the TSFS

encryption algorithm to special characters as well, and corrects substitution and shifting processes by

providing more than one modulo factor and four 16-arrays respectively in order to avoid the error

that occurs in decryption steps. Experiment results show that enhanced TSFS encryption algorithm

outperforms Data Encryption Standard algorithm (DES) and Advanced Encryption Standard

algorithm (AES) in terms of query execution time and database added size.

Keywords: Security, Transposition, Substitution, Folding, Shifting.

INTRODUCTION

The main objective is to provide

security for database for the web-based

application. Client of this web application is a

college. College Authority wants to maintain a

website for helping students and also wants to

maintain information about student’s

attendance, marks, registration details and also

wants to percentages of final year students for

placements in different companies.Data

security has consistently been a major issue in

web applications. Database security has

paramount importance in industrial, civilian

and government domains.

Organizations are storing big amount

of data in database for data mining and other

types of analysis. Some of this data is

considered sensitive and has to be protected

from disclosure.

 Database systems are usually

deployed deep inside the company network

and thus insiders have the easiest opportunity

to attack and compromise them, and then

steal the data. So, data must be protected from

inside attackers also.

Many conventional database security

systems are proposed for providing security

for database, but still the sensitive data in

database are vulnerable to attack because the

data are stored in the form of plaintext only.

CSEIT184187 | Received : 01 April 2018 | Accepted : 10 April 2018 | March-April-2018 [(4) 2 : 494-500]

International Journal of Scientific Research in Computer Science, Engineering and Information Technology

© 2018 IJSRCSEIT | Volume 4 | Issue 2 | ISSN : 2456-3307

495

Fig.1 Database security

In the presence of security threats, database

security is becoming one of the most urgent

challenges because much damage to data can

happen if it suffers from attacks and

unauthorized access. With databases in

complex, multitiered applications, attackers

may reach the information inside the

database. Damage and misuse of sensitive data

that is stored in a database does not only

affect a single user; but possibly an entire

organization. We can categorize the attackers

into three types: intruder, insider, and

administrator. Intruders are external people

who infiltrate a database server to steal or

tamper with data. Insiders are authorized

users in a database system, who conduct some

malicious works.

Administrators can be database

administrators (DBA) or system administrators

(SA), and both have absolute rights to database

systems. In order to achieve a high level of

security, the complexity of encryption

algorithms should be increased with minimal

damage to database efficiency, ensuring

performance is not affected.

II. PROPSED ALGORITHM (ETSFS)

The main objective of this paper is to

enhance the TSFS algorithm [1] and

accordingly to provide a high security to the

databases whilst limiting the added time cost

for encryption and decryption by encrypting

sensitive data only. The ETSFS algorithm can

encrypt the data that consists of alphabetic

characters from A to Z, all numbers and the

following symbols: (*, -, ., /, :, @ and _). The

ETSFS algorithm is a symmetric encryption

algorithm, meaning each transformation or

process must be invertible and have inverse

operation that can cancel its effect. The key

also must be used in inverse order.

ETSFS algorithm uses four techniques of

transformations, which are transposition,

substitution, folding and shifting. Fig. 1

presents the encryption algorithm, where the

decryption algorithm reverses the encryption

algorithm. The following sections describe the

four techniques and contain the algorithms in

pseudo-code format to be easy to understand:

A. Transposition

Transposition transformation changes the

location of the data matrix elements by using

diagonal transposition that reads the data

matrix in the route of zigzag diagonal starting

from the upper left corner after getting the

data and pads it with *s if it is less than 16

digits [1]. Fig. 2 shows the transposition

process when the entered data was:

6923@domain.Sa.

CSEIT184187 | Received : 01 April 2018 | Accepted : 10 April 2018 | March-April-2018 [(4) 2 : 494-500]

International Journal of Scientific Research in Computer Science, Engineering and Information Technology

© 2018 IJSRCSEIT | Volume 4 | Issue 2 | ISSN : 2456-3307

496

Algorithm encryption (String data,

 Array[12] keys)

Pre: data is plain text.

keys is array that contains 12 4x4-key

matrices.

Post: encryptedData is data after encrypting.

Matrix[4,4] dataMatrix;

String encryptedData;

if (data length < 16)

padd data by adding *'s;

else if (data length > 16)

cut the data after 16;

end if

dataMatrix = data;

key = expandKeys (keys);

for (int i=0; i<12; i++)

dataMatrix =

transposition

(dataMatrix);

dataMatrix =

substitution

(dataMatrix, keys(i),

keys((i+1)mod 12));

dataMatrix = folding

(dataMatrix);

dataMatrix = shifting

(dataMatrix);

end for

encryptedData = dataMatrix;

return encryptedData

End encryption

Fig. Encryption algorithm.

Algorithm transposition (Matrix data)

Pre: data is 4x4 matrix that contains the data

should be encrypted.

Post: data is data after changing symbols

location.

Matrix temp;

temp[0,0] = data[0,0];

temp[0,1] = data[0,1];

temp[0,2] = data[1,0];

temp[0,3] = data[2,0];

temp[1,0] = data[1,1];

temp[1,1] = data[0,2];

temp[1,2] = data[0,3];

temp[1,3] = data[1,2];

temp[2,0] = data[2,1];

temp[2,1] = data[3,0];

temp[2,2] = data[3,1];

temp[2,3] = data[2,2];

temp[3,0] = data[1,3];

temp[3,1] = data[2,3];

temp[3,2] = data[3,2];

temp[3,3] = data[3,3];

data = temp;

return data;

End transposition

Fig. Transposition algorithm.

Algorithm inverseTransposition (Matrix data)

Pre: data is 4x4 matrix, which contains the

data should be decrypted.

Post: data is data after retrieving symbols

location.

Matrix temp;

temp[0,0] = data[0,0];

CSEIT184187 | Received : 01 April 2018 | Accepted : 10 April 2018 | March-April-2018 [(4) 2 : 494-500]

International Journal of Scientific Research in Computer Science, Engineering and Information Technology

© 2018 IJSRCSEIT | Volume 4 | Issue 2 | ISSN : 2456-3307

497

temp[0,1] = data[0,1];

temp[0,2] = data[1,1];

temp[0,3] = data[1,2];

temp[1,0] = data[0,2];

temp[1,1] = data[1,0];

temp[1,2] = data[1,3];

temp[1,3] = data[3,0];

temp[2,0] = data[0,3];

temp[2,1] = data[2,0];

temp[2,2] = data[2,3];

temp[2,3] = data[3,1];

temp[3,0] = data[2,1];

temp[3,1] = data[2,2];

temp[3,2] = data[3,2];

temp[3,3] = data[3,3];

data = temp;

return data;

End inverseTransposition

Fig. Inverse transposition algorithm.

B. Substitution

The second algorithm is substitution

transformation. It replaces one data matrix

element with another by applying certain

function [1]. If the element represents an

alphabetic character, it then will be replaced

with another character. If the element

represents a number, it will be replaced with a

number,

and if it represents a symbol, it will be

replaced with a symbol. The encryption

function [1] E for any given letter x is

E(x) = (((k1+p) mod M +k2) mod M (1)

Where p is the plain matrix element, k1

and k2 are the keys elements that have the

same position of p, and M represents the size

of modulo operation. The ETSFS algorithm

takes three values for the modulus size instead

of

one value as in the TSFS algorithm. The

described substitution process in [1] has

confusion. Confusion happens if the data is

composed of alphabetic and numeric digits,

and the modulus size (M) will be 26 for any

digit, as illustrated in the next example. If one

element in the data was 4, k1=5, k2=5, M = 26,

then the result of substitution process is 14 as

the paper presents. This result causes two

problems. The first problem, is that the length

of the data will be changed and increased; for

example, when the plan text size is 16 digits,

the cipher text size will be 17 digits if one

element only changes, and that contradicts the

TSFS algorithm's feature. The second problem,

since the inverse operation decrypts the data

digit by digit also, is that then it will deal with

each element in the cipher text individually (1

then 4). As a result, the decrypted data will be

different from the data that have been

encrypted. Therefore, the ETSFS algorithm

gives M the following values: 26 if p is

aliphatic, 10 if p is numerical and 7 if p is

symbolic. The decryption function [1] D is:

D(E(x)) = (((E(x) – k2) mod M) – k1) mod M (2)

Since most of the programming languages

such as Java and C++ deal with the modulus as

the remainder of an integer division, some of

the results may have minus sign, and this will

create a problem because there is no data that

have minus sign representation. So, one more

step has been added to the ETSFS algorithm

CSEIT184187 | Received : 01 April 2018 | Accepted : 10 April 2018 | March-April-2018 [(4) 2 : 494-500]

International Journal of Scientific Research in Computer Science, Engineering and Information Technology

© 2018 IJSRCSEIT | Volume 4 | Issue 2 | ISSN : 2456-3307

498

implementation to check if the result includes

the minus sign, and then apply:

D(E(x)) = M - |D(E(x))|

The following Fig. 5 shows the result of

substitution. From the same example in fig. 5,

if we implemented the decryption operation

(2) on the first element, the result would be -4,

so the ETSFS algorithm applies function (3) to

get the correct result, which is 6. Fig. 6 and 7

show the substitution encryption algorithm

and its inverse respectively.

Algorithm

substitution

(Matrix data,

Matrix key1,

 Matrix key2)

Pre: data is 4x4 matrix.

key1 and key2 are 4x4 matrix used to

encrypt data.

Post: data is data after applying substitution

encryption method.

Matrix temp;

int M;

for (int i=0; i<4; i++)

for (int j=0; j<4; j++)

if (data[i,j] is alphabet)

M=26;

else if (data[i,j] is number)

M=10;

else if (data[i,j] is symbol)

M=7;

end if

temp[i,j]= (((k1[i,j]+

numeric(data[i,j]) mod M)+k2[i,j])

mod M; end for

end for

data = temp;

return data;

End substitution

Fig: Substitution algorithm

Algorithm inverse Substitution (Matrix data,

Matrix key1,

Matrix key2)

Pre: data is 4x4 matrix of data get from

inverse Transposition technique.

key1 and key2 4x4 matrix used to

decrypt data.

Post: data is data after retrieving changes.

Matrix temp;

int M;

for (int i=0; i<4; i++)

for (int j=0; j<4; j++)

if (data[i,j] is alphabet)

M=26;

else if (data[i,j] is number)

M=10;

else if (data[i,j] is symbol)

M=7;

end if

num=(numric(data[i,j])-k2[i,j]-

k1[i,j]) mod M

if (num<0)

CSEIT184187 | Received : 01 April 2018 | Accepted : 10 April 2018 | March-April-2018 [(4) 2 : 494-500]

International Journal of Scientific Research in Computer Science, Engineering and Information Technology

© 2018 IJSRCSEIT | Volume 4 | Issue 2 | ISSN : 2456-3307

499

num = M - |num|

end if

end for

end for

data = temp;

return data;

End inverse Substitution

Fig: Inverse Substitution

C. Folding

The third algorithm is folding

transformation. It shuffles one of the data

matrix elements with another in the same

entered data, like a paper fold. The data matrix

is folded horizontally, vertically and

diagonally [1]. The horizontal folding is done

by exchanging the first row with the last row.

The vertical one is done by exchanging the

first column with the last column. The

diagonal fold is done by exchanging the inner

cells, the upper-left cell with the down-right

cell and the upper-right cell with the down-

left cell. Fig. 8 shows the example after

folding, while Fig. 9 shows the folding

encryption algorithm. Next, Fig. 10 shows the

folding decryption algorithm.

Algorithm folding (Matrix data)

Pre: data is 4x4 matrix of data get from

substitution technique.

Post: data is data matrix after applying

folding technique.

Matrix temp;

temp[0,0] = data[3,3];

temp[0,1] = data[3,1];

temp[0,2] = data[3,2];

temp[0,3] = data[3,0];

temp[1,0] = data[1,3];

temp[1,1] = data[2,2];

temp[1,2] = data[2,1];

temp[1,3] = data[1,0];

temp[2,0] = data[2,3];

temp[2,1] = data[1,2];

temp[2,2] = data[1,1];

temp[2,3] = data[2,0];

temp[3,0] = data[0,3];

temp[3,1] = data[0,1];

temp[3,2] = data[0,2];

temp[3,3] = data[0,0];

data = temp;

return data;

End folding

Fig: Folding Algorithm

Algorithm inverseFolding (Matrix data)

Pre: data is 4x4 matrix of data get from

inverse substitution technique.

Post: data is data matrix after applying

inverse folding technique.

Matrix temp;

temp [0,0] = data[3,3];

temp [0,1] = data[3,1];

temp [0,2] = data[3,2];

temp [0,3] = data[3,0];

temp [1,0] = data[1,3];

temp [1,1] = data[2,2];

temp [1,2] = data[2,1];

 temp [1,3] = data[1,0];

temp [2,0] = data[2,3];

CSEIT184187 | Received : 01 April 2018 | Accepted : 10 April 2018 | March-April-2018 [(4) 2 : 494-500]

International Journal of Scientific Research in Computer Science, Engineering and Information Technology

© 2018 IJSRCSEIT | Volume 4 | Issue 2 | ISSN : 2456-3307

500

temp [2,1] = data[1,2];

temp [2,2] = data[1,1];

temp [2,3] = data[2,0];

temp [3,0] = data[0,3];

temp [3,1] = data[0,1];

temp [3,2] = data[0,2];

temp [3,3] = data[0,0];

data = temp;

return data;

End inverse Folding

 Fig: Inverse Folding Algorithm

D. Shifting

The last part of the algorithm is the shifting

transformation, which provides a simple way

to encrypt using a 16-array element of

numeric digits to exchange a letter with

another. Each element of the array must

contain the numeric representation of the

data. Each digit must appear only once in each

element of the array. The digits can appear in

any order.

 In shifting process, the algorithm replaces

each element in the data matrix by its position

within its array element. The ETSFS algorithm

uses four 16-arrays instead of one array as the

TSFS algorithm uses, because the described

shifting process in [1] has confusion. For

example, if an element in the plain text is 4

and its position within the array is 15, then

the shifting process in [1] returns 15, which is

causing the same two problems that were

described in substitution transformation. So,

the ETSFS algorithm separates each type from

other. The ETSFS algorithm uses four 16-

arrays, one for numeric, one for symbols, but

because it is difficult to enumerate all symbols

in this project; the suggested ETSFS algorithm

considers only two types of symbols. Symbols

that are used in emails (-, ., @, _) and symbols

that are used in IP addresses (/, :). The last two

16-arrays are used for alphabetic, where one

for capital letters and the other for small

letters. We used that to enhance TSFS

algorithm and make it is sensitive for the type

of letter. The process illustrated in Fig. 11. Fig.

12 and 13 show the shifting encryption

algorithm and its inverse respectively.

The previous encryption process is

considered as the result of the first round of

the ETSFS algorithm. The output of the first

round goes as an input to the second round

and the output the second round goes as an

input to the third round.

This process continues up to the 12th

round and the output of this round is the

cipher text of the given plain text and that

cipher text is stored in the database. For keys,

in each round, it selects two keys for

encryption. In encryption, each round (i)

selects the key (i) and the key (i+1), at round

12 it selects key (12) and key (1). In

decryption, the keys are selected in reverse

order. The Fig. 14 shows the steps of expand

keys as [1] suggested.

CSEIT184187 | Received : 01 April 2018 | Accepted : 10 April 2018 | March-April-2018 [(4) 2 : 494-500]

International Journal of Scientific Research in Computer Science, Engineering and Information Technology

© 2018 IJSRCSEIT | Volume 4 | Issue 2 | ISSN : 2456-3307

501

CONCLUSION

The security of this data has become

an important issue for the Organization. The

best solution centered on securing the data is

using cryptography, along with other methods.

This paper proposes the enhancement of the

TSFS algorithm to support the encryption of

special characters, correct substitution process

by providing more than one modulo factor to

differentiate between data types and prevent

increasing the data size, as well as correcting

the shifting process for the same reasons by

providing four 16-arrays. The experimental

results have shown that the ETSFS algorithm

successfully encrypted important symbols, as

well as alphanumeric data. The improved

performance comes without compromising

query processing time or database size. Using

well-established encryption algorithms as

benchmarks, such as DES and AES, the

proposed ETSFS algorithm was shown to have

consumed the smallest space and encryption

time compared to the other algorithms.

REFERENCES

1. Rakesh Agrawal, Jerry Kiernan,

Ramakrishnan Srikanth, Yirong Xu,2002,

Hippocratic databases, Proceedings of the

28th international conference on Very

Large Data Bases.

2. L Liu, J. Gai,2008, A new lightweight

database encryption scheme transparent to

applications, Proceedings of the 6th IEEE

International Conference on Industrial

Informatics.

3. K Kaur, K. Dhindsa, G. Singh, 2009,

Numeric to numeric encryption: using

3KDEC algorithm, Proceedings of IEEE

International Conference on Advance

Computing. [4] D.

4. Manivannan, R. Sujarani, 2010, Light

weight and secure database encryption

using TSFS algorithm, Proceedings of the

International Conference on Computing

Communication and Networking

Technologies.

5. Hanan A. Al-Souly, Abeer S. Al-Sheddi,

Heba A. Kurdi., 2013 Lightweight

Symmetric Encryption Algorithm for

Secure Database, (IJACSA) International

Journal of Advanced Computer Science

and Applications. [6] S. Bhatnagar,

Securing Data-At-Rest, Literature by Tata

Consultancy Services.

6. Gang Chen, “A Database Encryption

Scheme for Enhanced Security and Easy

Sharing Computer Supported Cooperative

Work in Design”, 2006. CSCWD „06. 10th

International Conference on Publication

Year: 2006.

