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ABSTRACT 

The rapidly expanding field of big data analytics has started to play a pivotal role in the evolution of 

healthcare practices and research. It has provided tools to accumulate, manage, analyse, and assimilate large 

volumes of disparate, structured, and unstructured data produced by current healthcare systems. Big data 

analytics recently applied towards aiding the process of care delivery and disease exploration. In this paper, 

we discuss some of these significant challenges with a focus on three upcoming and promising areas of 

medical research: image, signal, and genomics-based analytics. 
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I. INTRODUCTION 

 

The concept of “big data” is not new; however, the 

way it is defined is continually changing. Various 

attempts at defining big data essentially characterize 

it as a collection of data elements whose size, speed, 

type, and/or complexity require one to seek, 

significant, and invent new hardware and software 

mechanisms in order to successfully store, analyse, 

and visualize the data. Healthcare is a prime example 

of how the three V's of data, velocity (speed of 

generation of data), variety, and volume is an innate 

aspect of the data it produces.  

 

Historical approaches to medical research have 

focused on the investigation of disease states based 

on the changes in physiology in the form of a 

confined view of the specific singular modality of 

data  Important physiological and pathophysiological 

phenomena are concurrently manifest as changes 

across multiple clinical streams. This results from 

strong coupling among different systems within the 

body (e.g., interactions between heart rate, 

respiration, and blood pressure) thereby producing 

potential markers for clinical assessment. 

In this paper, three areas of big data analytics in 

medicine discussed. These three areas do not 

comprehensively reflect the application of big data 

analytics in medicine. 

 

Image Processing:  Medical images are an essential 

source of data frequently used for diagnosis, therapy 

assessment, and planning. Computed tomography 

(CT), magnetic resonance imaging (MRI), X-ray, 

molecular imaging, ultrasound, are some of the 

examples of imaging techniques. 

 

Signal Processing:  Similar to medical images, 

medical signals also pose volume and velocity 

obstacles especially during continuous, high-

resolution acquisition and storage from a multitude 

of monitors connected to each patient. Currently, 

healthcare systems use numerous different and 

continuous monitoring devices that singular 
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physiological waveform data or discretised vital 

information to provide alert mechanisms in case of 

open events. 

 

Genomics:  The cost to sequence the human genome 

(encompassing 30,000 to 35,000 genes) is rapidly 

decreasing with the development of high-throughput 

sequencing technologythe predictive, preventive, 

participatory, and personalized health, referred to as 

P4, medicine paradigm as well as an integrative 

personal omics profile. The P4 initiative is using a 

system approach for (i) analysing genome-scale 

datasets to determine disease states, (ii) moving 

towards blood-based diagnostic tools for continuous 

monitoring of a subject, (iii) exploring new 

approaches to drug targetdiscovery, developing tools 

to deal with big data challenges of capturing, 

validating, storing, mining, integrating, and finally 

(iv) modelling data for each. 

 

II. MEDICAL IMAGE PROCESSING FROM 

BIG DATA POINT OF VIEW 

 

Medical imaging provides essential information on 

anatomy and organ function in addition to detecting 

diseases states. Moreover, it is utilized for organ 

delineation, identifying 

 

Tumors in lungs, spinal deformity diagnosis, artery 

stenosis detection, aneurysm detection, and so forth. 

In these applications, image processing techniques 

such as enhancement, segmentation, and denoising 

in addition to machine learning methods employed. 

As the size and dimensionality of data increase, 

understanding the dependencies among the data and 

designing efficient, accurate, and computationally 

efficient methods demand new computer-aided 

techniques and platforms. The rapid growth in the 

number of healthcare organizations as well as the 

number of patients has resulted in the excellent use 

of computer-aided medical diagnostics and decision 

support systems in clinical settings.  

 

Many areas of health care such as diagnosis, 

prognosis, and screening can improve by utilizing 

computational intelligence. The integration of 

computer analysis with appropriate care has 

potential to help clinicians improve diagnostic 

accuracy. The integration of medical images with 

other typesofelectronic health record (EHR) data and 

genomic data can also improve the accuracy and 

reduce the time taken for diagnosis. In the following, 

data produced by imaging techniques reviewed and 

applications of medical imaging from a big data point 

of view are discussed. 

 

A. Data Produced by Imaging Techniques 

Medical imaging encompasses a broad spectrum of 

different image acquisition methodologies typically 

utilized for a variety of clinical applications. For 

example, visualizing blood vessel structure can be 

performed using magnetic resonance imaging (MRI), 

computed tomography (CT), ultrasound, and 

photoacoustic imaging [30]. From a data dimension 

point of view, medical images might have 2, 3, and 

four dimensions. Positron emission tomography 

(PET), CT, 3D ultrasound, and functional MRI (fMRI) 

considered as multidimensional medical data. 

Modern medical image technologies can produce 

higher solution images such as respiration-correlated 

or “four-dimensional” computed tomography (4D CT) 

Molecular imaging is a noninvasive technique of 

cellular and subcellular events which has the 

potential for clinical diagnosis of disease states such 

as cancer. However, to make it clinically applicable 

for patients, the interaction of radiology, nuclear 

medicine, and biology is crucial that could 

complicate its automated analysis. Microwave 

imaging is an emerging methodology that could 

create a map of electromagnetic wave scattering 

arising from the contrast in the dielectric properties 

of different tissues. It has both functional and 

physiological information encoded in the dielectric 

properties which can help differentiate and 

characterize different tissues and pathologies. 

However, microwaves have scattering behavior that 

makes retrieval of data a challenging task. Advanced 
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Multimodal Image-Guided Operating (AMIGO) suite 

designed which has angiographic X-ray system, MRI, 

3D ultrasound, and PET/CT imaging in the operating 

room (OR). This system has been used for cancer 

therapy and showed the improvement in localization 

and targeting an individual‟s diseased tissue [1, 2]. 

 

B. Methods 

 

The volume of medical images is growing 

exponentially. For instance, Image CLEF medical 

image dataset contained around 66,000 images 

between 2005 and 2007. 

 

While just in the year of 2013 around 300,000 images 

were stored every day [3]. In addition to the growing 

volume of images, they differ in modality, resolution, 

dimension, and quality, which introduce new 

challenges such as data integration and mining 

especially if multiple datasets are involved. 

Compared to the volume of research that exists on 

single modal medical image analysis, there is the 

considerably lesser number of research initiatives on 

multimodal image analysis. 

 

C. Analytical Methods 

 

The goal of medical image analytics is to improve the 

interpretability of depicted contents [4].Many 

methods and frameworks developed for medical 

image processing. However, these methods are not 

necessarily applicable for big data applications. One 

of the frameworks developed for analyzing and 

transformation of huge datasets is Hadoop that 

employs Map Reduce Map Reduce is a programming 

paradigm that provides scalability across many 

servers in a Hadoop cluster with a broad variety of 

real-world applications. However, it does not 

perform well with input output intensive tasks Map 

Reduce framework.It has been used in [5] to increase 

the speed of three large-scale medical image 

processing use-cases, (i) finding optimal parameters 

for lung texture classification by employing a well-

known machine learning method, support vector 

machines (SVM), (ii) content-based medical image 

indexing, and (iii) wavelet analysis for robust texture 

classification. 

 

D. Collecting, Sharing, and Compressing Methods 

 

In addition to developing analytical methods, efforts 

have made for collecting, compressing, sharing, and 

anonymizing medical data. One example is IDASH 

(integrating data for analysis, anonymization, and 

sharing) which is a center for biomedical computing 

[6]. It focuses on algorithms and tools for sharing 

data in a privacy-preserving manner. The goal of 

iDASH is to bring together a multi-institutional team 

of quantitative scientists to develop algorithms and 

tools, services, and a biomedical cyberinfrastructure 

to be used by biomedical and behavioral researchers 

[7]. Another example of a similar approach is Health-

e-Child consortium of 14 academic, industry, and 

clinical partners with the aim of developing an 

integrated healthcare platform for European 

pediatrics [8]. 

 

There are some limitations in implementing the 

application-specific compression methods on both 

general purpose processors and parallel processors 

such as graphics processing units (GPUs) as these 

algorithms need highly variable control and the 

complex bit well suited to GPUs and pipeline 

architectures. To overcome this limitation, an FPGA 

implementation proposed for LZ-factorization which 

decreases the computational burden of the 

compression algorithm [9]. Lossy image compression 

has been introduced in [10] that reshapes the image 

in such a way that if the image is uniformly sampled, 

sharp features have a higher sampling density than 

the rough ones. This method is claimed to be 

applicable for big data compression. However, for 

medical applications lossy methods are not applicable 

in most cases as fidelity is essential and information 

must preserve. These techniques are among a few 

techniques that have been either designed as 

prototypes or developed with limited applications. 

Developing methods for processing/analysing a broad 
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range and large volume of data with acceptable 

accuracy and speed is still critical. In Table 1, we 

summarize the challenges facing medical image 

processing. When dealing with big data, these 

challenges seemed to be more severe and on the 

other hand analytical methods could benefit the big 

data to handle them. 

 

III. MEDICAL SIGNAL ANALYTICS 

 

Streaming data analytics in healthcare can be defined 

as a systematic use of continuous waveform (the 

signal varying against time) and related medical 

record information developedthrough applied 

analytical disciplines (e.g., statistical, quantitative, 

contextual, cognitive, and predictive) to drive 

decision making for patient care. The analytics 

workflow of real-time streaming waveforms in 

clinical settings can be broadly described. 

 

Firstly, a platform for streaming data acquisition and 

ingestion is required, which has the bandwidth to 

handle multiple waveforms at different fidelities. 

Integrating these dynamic waveform data with static 

data from the EHR is a crucial component to provide 

situational and contextual awareness for the analytics 

engine. Enriching the data consumed by analytics 

not only makesthe system more robust but also helps 

balance the sensitivity and specificity of the 

predictive analytics. The specifics of the signal 

processing will largely depend on the type of disease 

cohort under investigation. A variety of signal 

processing mechanisms can be utilized to extract a 

multitude of target features which are then 

consumed by a trained machine learning model to 

produce actionable insight.  

 

These actionable insights could either be diagnostic, 

predictive, or prescriptive. These insights could 

further be designed to trigger other mechanisms such 

as alarms and notification to physicians. 

 

 

A. Data Acquisition 

 

Historically streaming data from connected 

physiological signal acquisition devices rarely stored. 

Even if the option to store this data were available, 

thelength of these data captures was typically short 

and downloaded only using proprietary software and 

data formats provided by the device manufacturers. 

Although most major medical device manufacturers 

are now taking steps to provide interfaces to access 

live streaming data from their devices, such data in 

motion very quickly poses archetypal big 

datachallenges. The fact that there are also 

governance challenges such as lack of data protocols, 

lack of data standards, and data privacy issues are 

adding to this.  

 

B. Data Storage and Retrieval 

 

With massive volumes of streaming data and other 

patient information that can gather from clinical 

settings, sophisticated storage mechanisms of such 

data are imperative. Since storing and retrieving can 

be computational and time expensive, it is critical to 

have a storage infrastructure that facilitates rapid 

data pull and commits based on analytic demands. 

With its capability to store and compute large 

volumes of data, usage of systems such as Hadoop, 

Map Reduce, and Mongo DB [11, 12] is becoming 

much more familiar with the healthcare research 

communities. Mongo DB is a free cross-platform 

document-oriented database  

 

C. Data Aggregation 

Integration of disparate sources of data, developing 

consistency within the data, standardization of data 

from similar sources, and improving the 

confidencein the data especially towards utilizing 

automated analytics are among challenges facing data 

aggregation in healthcare systems. Analysis of 

continuous data heavily utilizes the information in 

time domain. However, static data does not always 

provide accurate time context and, hence, when 

combining the waveform data with static electronic 
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health record data, thetemporal nature of the time 

context during integration can also add significantly 

to the challenges. There are considerable efforts in 

compiling waveforms and other associated electronic 

medical information into one cohesive database that 

are made publicly available to researchers worldwide 

[13]. For example, MIMIC II [14] and some other 

datasets included in Physionet [15] provide 

waveforms and other clinical data from a wide 

variety of actual patient cohorts. 

 

D. Signal Analytics Using Big Data 

Research in signal processing for developing big 

data-based clinical decision support systems (CDSSs) 

is getting more prevalent.  In fact, organizations such 

as the Institution of Medicine have long advocated 

use of health information technology including 

CDSS to improve care quality CDSSs provide medical 

practitioners with knowledge and patient-specific 

information, intelligently filtered and presented at 

appropriate times, to improve the delivery of care.  A 

study presented by Lee and Mark uses the MIMIC II 

database to prompt therapeutic intervention to 

hypotensive episodes using cardiac and blood 

pressure time series data another study shows the use 

of physiological waveform data along with clinical 

data from the MIMIC II database for finding 

similarities among patients within the selected 

cohorts. 

 

As complex physiological monitoring devices are 

getting smaller, cheaper, and more portable, personal 

monitoring devices are being used outside of clinical 

environments by both patients and enthusiasts alike. 

However, similar to clinical applications, combining 

information simultaneously collected from multiple 

portable devices can become 

challenging.Pantelopoulos and Bourbakis discussed 

the research and development of wearable biosensor 

systems and identified the advantages and 

shortcomings in this area of study. Similarly, 

portable and connected electrocardiogram, blood 

pressure and body weight devices used to set up a 

network-based study of telemedicine. The variety of 

fixed as well as mobile sensors available for data 

mining in the healthcare sector and how such data 

can be leveraged for developing patient care 

technologies are surveyed. 

 

IV. BIG DATA APPLICATIONS IN GENOMICS 

 

The advent of high-throughput sequencing methods 

has enabled researchers to study genetic markers 

over a wide range of population improve efficiency 

by more than five orders of magnitude since 

sequencing of the human genome was completed and 

associate genetic causes of the phenotype in disease 

states. Genome-wide analysis utilizing microarrays 

has been successful in analyzing traits across a 

population and contributed successfully to 

treatments of complex diseases such as Crohn‟s 

disease and age-related muscular degeneration. 

Analytics of high-throughput sequencing techniques 

in genomics is an inherently big data problem as the 

human genome consists of 30,000 to 35,000 genes 

Initiatives are currently being pursued over the 

timescale of years to integrate clinical data from the 

genomic level to the physiological level of a human 

being. These initiatives will help in delivering 

personalized care to each patient. 

 

A. Pathway Analysis 

 

Resources for inferring functional effects for “-omics” 

big data are largely based on statistical associations 

between observed gene expression changes 

andpredicted functional effects. Experiment and 

analytical practices lead to error as well as batch 

effects Interpretation of functional effects has to 

incorporate continuous increases in available 

genomic data and corresponding annotation of 

genes.There are variety of tools, but no “gold 

standard” for functional pathway analysis of high-

throughput genome-scale data. Three generations of 

methods used for pathway analysis are described as 

follows. The first generation encompasses 

overrepresentation analysis approaches that 
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determine the fraction of genes in a particular 

pathway found among the genes, which are 

differentially expressed. Examples of the first 

generation tools are Onto-Express Go Miner and 

Clue Go. The second generation includes functional 

class scoring approaches, which incorporate 

expression levelchanges in individual genes as well as 

functionally similar genes. 

 

B. Reconstruction of Regulatory Networks 

 

Pathway analysis approaches do not attempt to make 

sense of high-throughput big data in biology as 

arising from the integrated operation of a dynamical 

system. There are multiple approaches to analyzing 

genome-scale data using a dynamical system 

framework [30, 31]. Due to the breadth of the field, 

in this section, we mainly focus on techniques to 

infer network models from big biological data.  

Reconstruction of metabolic networks has advanced 

in last two decades. One objective is to develop an 

understanding of organism-specific metabolism 

through reconstruction of metabolic networks by 

integrating genomics, transcriptomics, and 

proteomics high-throughput sequencing techniques 

[33]. Constraint-based methods are widely applied to 

probe the genotype-phenotype relationship and 

attempt to overcome the limited availability of 

kinetic constants Reconstruction of gene regulatory 

networks from gene expression data is another well-

developed field.  

 

Network inference methods can be split into five 

categories based on the underlying model in each 

case: regression, mutual information, correlation, 

Boolean regulatory networks, and other techniques 

[16, 35]. Over 30 inference techniques were assessed 

after DREAM5 challenge in 2010 [17, 34].  Boolean 

regulatory networks [18] are a particular case of 

discrete dynamical models where the state of a node 

or a set of nodes exists in a binary state. The actual 

state of each node or set of nodes is determined by 

using Boolean operations on the state of other nodes 

in the network [19]. Boolean networks are beneficial 

when an amount of quantitative data is small [10, 20] 

but yield the high number of false positives (i.e., 

when a given condition is satisfied while actually, 

that is not the case) that may be reduced by using 

prior knowledge [21, 22]. Another bottleneck is that 

Boolean networks are prohibitively expensive when 

the number of nodes in the network is large. This is 

due to the number of global states rising 

exponentially in the number of entities [23].A 

method to overcome this bottleneck is to use 

clustering to break down the problem size. For 

example, Martin et al. [24] broke down a 34,000-

probe microarray gene expression dataset into 23 sets 

of metagenes using clustering techniques. This 

Boolean model successfully captured the network 

dynamics for two different immunology microarray 

datasets. The dynamics of gene regulatory network 

can be captured using ordinary differential equations 

(ODEs) [12-15]. This approach has been applied to 

determine regulatory network for yeast [25]. The 

study successfully captured the regulatory network 

which has been characterized using experiments by 

molecular biologists. Reconstruction of a gene 

regulatory network on a genome-scale system as a 

dynamical model is computationally intensive [26]. 

A parallelizable dynamical ODE model has been 

developed to address this bottleneck [27]. It reduces 

the computational time to O(𝑁2) from the time 

taken in other approaches which are O(𝑁3) or O(𝑁2 

log 𝑁) [28].Determining connections in the 

regulatory network for a problem of the size of the 

human genome, consisting of 30,000 to 35,000 genes 

[16, 17], will require exploring close to a billion 

possible connections. The dynamical ODE model has 

been applied to reconstruct the cardiogenic gene 

regulatory network of the mammalian heart [29]. 

 

V. CONCLUSION 

 

Big data analytics which leverages legions of 

disparate, structured and unstructured data sources is 

going to play a vital role in how healthcare practiced 

in the future. One can already see a spectrum of 

analytics being utilized, aiding in the decision-
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making and performance of healthcare personnel 

and patients. Here we focused on three areas of 

interest: medical image analysis, physiological signal 

processing, and genomic data processing. 

 

The acquisition, formation/reconstruction, 

enhancement, transmission, and compression. New 

technological advances have although there are some 

genuine challenges for signal processing of 

physiological data to deal with, given the current 

state of data competency and no standardized 

structure, there are opportunities in each step of the 

process towards providing systemic improvements 

within the healthcare research and practice 

communities. Apart from the apparent need for 

further research in the area of data wrangling, 

aggregating, and harmonizing continuous and 

discrete medical data formats, there is also an equal 

need for developing novel signal processing 

techniques specialized towards physiological signals. 

Research about mining for biomarkers and hidden 

patterns within bio signals tounderstand and predict 

disease cases has shown potential in providing 

actionable information. However, there are 

opportunities for developing algorithms to address 

data filtering, interpolation, transformation, feature 

extraction, feature selection, and so forth. 

Furthermore, with the notoriety and improvement 

of machine learning algorithms, there are 

opportunities in improving and developing robust 

CDSS for clinical prediction, prescription, and 

diagnostics. 

 

Integration of physiological data and high-

throughput “- omics” techniques to deliver clinical 

recommendations is the grand challenge for systems 

biologists. Although associatingFunctional effects 

with changes in gene expression have progressed, the 

continuous increase in available genomic data and its 

corresponding impact of annotation of genes and 

errors from experiment and analytical practices make 

analyzing functional effect from high-throughput 

sequencing techniques a challenging task. 

Reconstruction of networks on the genome-scale is 

an ill-posed problem. Robust applications developed 

for reconstruction of metabolic networks and gene 

regulatory networks. Limited availability of kinetic 

constants is a bottleneck, and hence various models 

attempt to overcome this limitation. There is an 

incomplete understanding of this large-scale problem 

as gene regulation, an effect of different network 

architectures, and evolutionary effects on these 

networks are still being analysed [135]. To address 

these concerns, the combination of the careful design 

of experiments and model development for 

reconstruction of networks will help in saving time 

and resources spent in building the understanding of 

regulation in genome-scale networks. The 

opportunity of addressing the grand challenge 

requires close cooperation among experimentalists, 

computational scientists, and clinicians. 
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