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ABSTRACT 
 

This paper proposes absolute magnetic encoder design for analog angular measurement using multi-sensor 

data-fusion based on Radial Basis Function (RBF) neural networks. Multiple linear Hall effect sensors and a 

magnet are used to realize the analog angular output. RBF neural networks are used to approximate multi-

dimensional nonlinear function between the sensor values and angular position of the magnet. The 

parameters of the RBF network are determined by supplying the data for multiple sensor values and the 

corresponding angular position of the magnet. Trained RBF neural network can be used to obtain the analog 

angle output for the given sensor inputs and it can be implemented using 8 or 16-bit microcontroller. This 

design of the encoder allows flexibility in terms of placement of the sensors. 

Keywords: Rotary encoder, magnetic encoder, multisensor data fusion, hall effect sensor, ANN, RBF neural 

networks, analog angular measurement. 

 

I. INTRODUCTION 

 

Rotary encoders are often used to track the angular 

position of the motor shaft. These are commonly 

used in CNC machines, robots, and other industrial 

equipment. Rotary encoders, whether absolute or 

incremental, typically use one of two measuring 

principles — optical or magnetic. While optical 

encoders were, in the past, the primary choice for 

high resolution applications, improvements in 

magnetic encoder technology now allow them to 

achieve better resolution. Magnetic technology is 

also, in many ways, more robust, rugged, having 

excellent shock resistance, fast, durable to unclean 

environment, reliable at low temperatures and 

immune to dust and dirt than optical technology, 

making magnetic encoders a popular choice in 

industrial environments. 

 

An absolute rotary magnetic encoder design with 

multi-sensor data fusion based on radial basis 

function artificial neural networks is proposed for 

the analog angular measurement. This design makes 

use of multiple linear hall-effect sensors positioned at 

various locations around the rotating magnet. 

 

Artificial Neural Networks (ANNs) are computing 

systems inspired by biological neural networks. 

ANNs learn by considering examples and they don’t 

generally need task specific programming. An ANN 

consists of connected units called artificial neurons, 

which are simplified version of biological neuron. 

Each connection between artificial neuron can 

transmit signal. In common ANN implementations, 

signal is a real number. The output of each artificial 

neuron is calculated by applying nonlinear function 

of the sum of its inputs. Typically, ANNs are 

organized in layers. Different layers may perform 

different kinds of transformations on their inputs. 

http://ijsrcseit.com/
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Each connection in ANN has a real value associated 

with it called weight that represents the signal 

strength. The weight values associated with 

connections in ANN goes on adjusting as the 

learning proceeds. ANNs have been successfully 

applied on variety of tasks such as image recognition, 

speech recognition, medical diagnosis etc. 

 

 Broadly speaking, ANNs can be applied for two 

major categories of tasks: 1. Classification 2. Function 

approximation. For magnetic encoder, a special type 

of ANN called Radial Basis Function (RBF) neural 

networks are used for approximating the multi-

dimensional nonlinear function between sensor 

outputs and the angle value. 

  

RBF network is an ANN that uses radial basis 

functions as activation functions. RBF networks 

usually consists of single hidden layer. The number 

of neurons in hidden layer is a design parameter. The 

output of the network is a linear combination of 

radial basis functions of the inputs and weights of the 

network. RBF networks have many uses such as 

function approximation, time series prediction, 

classification and system control.  

 

The common layered ANNs use back-propagation 

algorithm for learning. The learning process for RBF 

ANNs is slightly different compared to common 

ANNs. As the learning proceeds, the weights in RBF 

network keeps on adjusting so as to output a 

continuous value that approximates some nonlinear 

function.  

 

This design of magnetic encoder with RBF networks 

results in reduced hardware complexity because the 

sensors need not be positioned at some 

predetermined accurate locations. Also, the results 

for angle output value showed less amount of 

standard deviation.  

 

The rest of this paper is arranged as follows. Section 

II describes Magnetic encoder architecture, RBF 

network architecture along with its training. In 

section III the trained RBF network output and its 

accuracy are discussed. Section IV provides the 

conclusion. 

  

II. METHODOLOGY 

 

 A. Magnetic encoder architecture 

 Figure 1 depicts the proposed architecture for 

magnetic encoder. It consists of multiple linear hall-

effect sensors placed around a rotating magnet. As 

the magnet rotates, the output from the linear hall-

effect sensors varies. Minimum 3 sensors are required 

to uniquely identify the angular position of the 

magnet. 

 

The output signals from all the sensors are sent to a 

microcontroller that implements RBF neural 

network. For training the RBF network, sensor 

values for various angular positions of the rotating 

magnet needs to be sent to the network trainer. The 

trainer determines the weights of the RBF network 

so as to approximate the multi-dimensional 

nonlinear function between sensor outputs and angle 

value with desired level of accuracy. 

 

Figure 1.  Magnetic encoder architecture 

After completion of the training, all the weights of 

RBF network are sent to microcontroller. These 

weights are stored in nonvolatile memory of the 

microcontroller. With the trained weights, the 

microcontroller can output the analog angle value 

for the sensor inputs. The training needs to be 

performed in a machine with high computing 

capabilities as it requires larger memory, higher bit 

resolution and faster CPU. Training needs to be done 
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only once in the beginning for a given configuration 

of multiple sensors and magnet. 

 

B. RBF network architecture 

 

Figure 2.  RBF network architecture 

 

The above figure depicts the structure of the RBF 

network consisting of 3 layers:  

1. Input layer consisting of nodes for each sensor.  

2. Hidden layer consisting of RBF neurons.  

3. Output layer with 2 nodes for cos(angle) and 

sin(angle).  

 

The number of nodes in hidden layer is a design 

parameter of the network. For the magnetic encoder 

implementation, 5 to 10 RBF nodes in hidden layer 

are found to be sufficient. The nodes in hidden layer 

uses Gaussian activation function as follows: 

 
  

where c is the center of the RBF neuron  

r is radius associated with RBF neuron  

β is parameter for controlling shape of the activation 

function.  

x is the input i.e. multiple sensor values in this case.  

 

Each RBF neuron has its own c, r values. β = 1 is 

chosen for all the RBF neurons.  

The centers of the RBF neurons are chosen at equal 

angle intervals. And radius value chosen is the 

Euclidian distance between these centers.  

There are no weights associated with connections 

from input layer neurons to RBF neurons. Weights 

are associated with connections between hidden 

layer neurons and output layer neurons.  

 

Output layer consists of two nodes corresponding to 

cos(angle) and sin(angle) values. The cos and sin 

outputs are chosen instead of single angle value as 

output because of the cyclical nature of the inputs 

and output angle values. Both these output nodes are 

linear activation neurons.  

 

One set of weights are associated with output neuron 

for cos(angle), second set of weights are associated 

with output neuron for sin(angle). The values for 

these weights associated with both the output 

neurons needs to be determined by training the RBF 

neural network. For training, the values for multiple 

sensor inputs and corresponding cos(angle) and 

sin(angle) values needs to be supplied to the network 

trainer. The training methodology is described in 

next section. 

 

C. RBF network training 

Let A denote a matrix with number of columns = 

number of sensors and number of rows = number of 

data points.  

Let B denote a two-column matrix with values for 

cos(angle) and sin(angle) corresponding to the angle 

position for each row from matrix A.  

Let W denote a two-column matrix representing 

weights from hidden layer to output layer. First 

column in this matrix consists of weights associated 

with cos(angle) output neuron and second column 

consists of weights associated with sin(angle) output 

neuron.  

Since the output layer consists of linear activation 

neurons, the relationship can be expressed in matrix 

form as follows: 

A W = B 

The weights or the elements in W matrix are the 

unknowns. The number of these weights depends 

upon the number of RBF neurons in the network. 

And the number of equations is equal to the number 
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of training data available, which is usually much 

more than the number of RBF nodes. The more the 

number of training data available, better will be the 

accuracy of approximating the function. From linear 

algebra, the unknown weights can be expressed as 

follows:  

W = (AT A)-1 AT B 

III. RESULTS 

 

The trained network outputs the cos(angle) and 

sin(angle) values for any given sensor inputs. The 

actual angle value can be obtained by applying 

inverse cos and inverse sin functions. Since the 

network consists of only one hidden layer and 

relatively less number of total neurons and weights 

in it, its response in terms of time for obtaining the 

angle output value will be relatively fast. Also, the 

memory requirements are not huge and it can be 

implemented using 8 or 16-bit microcontroller. 

However, for training the network, machine with 

high computational capabilities are required as it 

requires high memory, faster CPU and higher bit 

resolution.  

 

The sensor outputs, expected angle value and actual 

angle value obtained are shown in Figure 3. Note 

that the expected and actual angle values are 

overlapping in below figure because of less difference 

between them. 

 

Figure 3.  Angle output of RBF network 

IV. CONCLUSION 

 

This paper shows an alternative approach of analog 

magnetic encoder design based on RBF neural 

networks. With this design, accuracy of ± 0.6 degrees 

is obtained. Future work can be carried out to 

improve the accuracy further, reduce memory 

requirements by having less RBF network 

parameters, improve the frequency response. 
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