
CSEIT184686 | Published – 08 May 2018 | May-June 2018 [(4) 6 : 456-462]

National Conference on Engineering Innovations and Solutions (NCEIS – 2018)

International Journal of Scientific Research in Computer Science, Engineering and Information Technology

© 2018 IJSRCSEIT | Volume 4 | Issue 6 | ISSN : 2456-3307

456

Emulation Of Associative Learning in a Humanoid Robot using

Artificial Neural Networks

Prof. Bhagirathi bai V*, Tanmay N Deshmukh, Kishore R

Department of Mechatronics Engineering, Acharya Institute of Technology, Bangalore, Karnataka, India

ABSTRACT

The objective of this paper is to document the development, design, and implementation of a humanoid

interface to a robotic implementation of the right human forelimb, the purpose of which is to interact with its

environment under programmed instructions by imitating the movements of an arm and engage users in

conversations. The arm has 10 Degrees of Freedom in total and weighs 2 kilograms. The software driving this

interface is put to action by a microcomputer primarily in the form of a chat-bot which aids in human-robot

interaction orally real-time. The areas for future application of this include human-machine interaction in

industry & medical, social, & hospitality settings. The necessary mechanisms for arm control and the rest are

presented in this paper.

Keywords: Humanoid robot, machine vision, face recognition, chatbot

I. INTRODUCTION

The need for robotics and automation has moved

beyond the factory floor to enter relevance in almost

all fields of human interest Giving an automation

system a humanoid shape and function not only

make their actions more comprehensible to the user,

but also socially acceptable. Life-size humanoid

robotics is the next avenue these field must explore.

It essentially replicates the human element to

complete tasks assigned to it, which the user can

easily understand and exploit to the required extent.

The self-funded project described in this paper

attempts to do just that. Along with the arm, the

robot built also boasts of a voice-driven intelligent

chat-bot feature which deals with information in the

aural and textual form. The service offers a

conversational context-based response to make it

appear more human. All this coupled with the

movable camera housing modelled around a life-size

human head has given the robotic interface a

familiar look and feel leading the writers christening

it with a relatable human name 'Charlie'. This paper

outlines the design of the torso and its integration

with the chat feature.

II. LITERATURE SURVEY

One of the hallmark of a humanoid design was the

Honda Asimo[1] developed by the Toyota Group,

debuted in 2000. Several other humanoid robots

were developed since. The HRP-4 Robot [2] is a

humanoid consisting of 7DOF arms weighing about

39Kgs. It uses complex mechanisms for actuating all

the joints in the robot. However, we need to

overcome the complexities of such designs and need

to consider costs when designing these systems. We

aim to achieve a focused human-robot interaction,

initiated by an encounter such as eye contact, or a

statement made in a tone of voice. A study [3] found

that people evaluate a physical embodied social agent

http://ijsrcseit.com/

Volume 4 | Issue 6 | May-June 2018 | www.ijsrcseit.com 457

more positively than a disembodied social agent.

Robots are being used in factories, they are being

weaponized in military, and are also being sent to

outer space. Yet, we do not have them in our homes.

We need to make progress in the field of social

robotics and our fascination towards humanoid

robots and the affect it has to people forms our

motivation for this work.

III. HARDWARE DESIGN

This is the design of the humanoid torso. Each of the

robot‟s arms consists of a 3DOF shoulder joint, an

elbow joint, and the wrist rotation, giving a total of

5DOF per arm, excluding the movements of the

fingers. Actuation of the robot‟s arm joints required

high torque motors delivering over 40kg-cm force. A

Johnson DC side-shaft geared motor meeting the

required specifications were used in every joint.

Potentiometers are used for position feedback, as a

DC motor does not possess absolute positional

control. 3D design is developed in Catia V5, a 3D

modelling software.

Figure 1. 3D Assembled CAD design.

A. Hand

Each finger is made of three hollow segments that

act like a kinematic chain, mimicking a human

finger. A tendon strand made of 3 beading wires runs

over the pulleys and under the roofs of the segments.

Pulling on this tendon causes the finger to fold.

Another tendon runs below the pulleys and over the

base of the segments. Pulling on this tendon causes

the finger to undo the folding and bringing it to an

open position. The tendons pass through the hollow

palm, and then through the axis of the wrist gear.

The wrist is actuated by a MG-995 servo motor, a

common motor used in hobby robotics.

Figure 2. Channels(hollow, gray) for tendons

B. Forearm

The forearm houses 5 MG-995 servo motors that

actuate the fingers independently. The tendons from

the wrist gear go through individual holes at the

bottom of the skeletal structure, and guides them out

at the top, where they would lead to their respective

servo motors. Rotation of the servo clockwise pulls

the actuation tendon and relaxes the other, and the

opposite is true for a counter-clockwise rotation. The

elbow joint is actuated by a high torque Johnson

motor, held by the bicep assembly and the shaft is

held by the forearm. A potentiometer is coupled

with the motor shaft, on the opposite side.

Figure 3. Cross-section of 3D model of the forearm

C. Bicep

The bicep houses the shoulder yaw-rotation DC

motor. The feedback potentiometer is placed parallel

with the axis of the motor shaft, coupled by gears

having gear ratio 4:3. That is, a 180‟ rotation of the

arm, causes a 270‟ rotation of the potentiometer shaft.

Volume 4 | Issue 6 | May-June 2018 | www.ijsrcseit.com 458

D. Shoulder

Two DC motors constitute pitch and roll motions.

The roll motion and its potentiometer feedback is

achieved in the same way as the elbow design, with

the potentiometer placed on the opposite side, along

the axis of rotation. The pitch motor is located at the

robot‟s clavicle, with its potentiometer directly

under the shaft, coupled by gears in the ratio 1:1.

Figure 4. CAD model of the shoulder

E. Arm support and Sternum

These set of parts are printed with the highest

density setting since it holds the entire arm‟s weight.

This portion houses the shoulder pitch rotation DC

motor. To prevent the motor from tilting because of

the arm‟s weight, an additional “sleeve” is inserted

after inserting the motor and is bolted in place.

Screws from the back panel and from the bottom

secures the assembly firmly.

Figure 5. Sternum design

F. Face

InMoov is a robot developed for artistic purposes by

French sculptor Gael Langevin in September 2011

(The first blueprint files were published in January

2012 on thingiverse.com) and its files are under

Creative Commons license. The face has provisions

for neck rotation servo and the jaw movements.

Figure 6. Assembled robot with right arm(till wrist)

and Inmoov head.

G. Electronics

The two web-cams used are Microsoft HD-3000, for

which the Inmoov eyes are designed. They provide

superior quality images and have small form factor.

The web-cams are plugged into the laptop computer

where image processing takes place. The robot‟s on

board Raspberry Pi and the laptop computer used to

process images are connected to a LAN. Post image

processing, necessary data like servo tilt angles for

tracking, are transmitted to the Raspberry Pi through

a TCP port. The RPi receives position values from

the potentiometers through an Arduino Mega, an

Atmel microcontroller board.

Volume 4 | Issue 6 | May-June 2018 | www.ijsrcseit.com 459

Figure 7. Electronics layout

IV. SOFTWARE DESIGN

The main function of the Arduino is to read analog

values and send them to the Rpi. This goal is to send

these values in fewest number of bytes as possible, as

frequently as possible. Failing which, the PID

position control of joints fail. The ADC on the

Arduino has a resolution of 10 bits for each channel.

Serial communication only allows transfer of 8 bits at

a time, therefore, each channel‟s value must be split

into 2 bytes. The first byte contains the 2 MSBs of an

analog value and the second byte contains the rest of

8 bits. These two are then recombined at the RPi.

The Arduino reads 8 such values from 8

potentiometers corresponding to the joint motors in

both arms. All 8 values are read and split into 2 bytes,

adding up to 16 bytes. A delimiting byte is added,

and all 17 bytes are sent to the RPi after each cycle.

The RPi‟s software consists of a multi-threaded

program, with each thread running on an infinite

loop. This is done so because multiple independent

tasks need to be executed without waiting for

unrelated actions. All threads, share a set of global

variables. These variables are volatile, that is, their

value can be changed by any thread at any time,

making them unpredictable. The main global

variable is the „setpoint‟, controlled by the GUI

thread, and sequence thread. The GUI allows manual

control of joint angles useful for testing and

debugging. The sequence thread is a program snippet

that can move the robot arms in a pre-recorded

motion. It does so by iterating through each position

in the list of target positions, assigning the setpoint to

the target positions for each joint, and pausing the

sequence thread for the specified amount to allow

the arm to come to the set position. The PID thread

takes care of bringing the arm to the setpoints as it is

being continuously scanned. It receives the analog

position values from the Arduino. This thread waits

for 17 bytes to get queued in the serial buffer before

processing them.

Figure 8. Flowchart of the code running on

Arduino

Figure 9. RPi code flow chart

These are 8 position values (2 bytes each) and a

known delimiting byte, 17 bytes in total per scan. If

the 17th byte is not the delimiting byte, the data is

considered corrupted and the serial buffer is flushed

to allow fresh data in the next cycle. The PID thread

does not modify the setpoints, it only accesses it.

The tracking thread starts a TCP connection to the

server on the laptop which has the cameras

connected to it. From there, it listens to the port for

incoming messages. The server sends JSON objects to

the RPi (the client) when a specific object such as a

face or a hand sign is in its field of view after

processing the images from the cameras. The

received JSON objects from the server contains the

Volume 4 | Issue 6 | May-June 2018 | www.ijsrcseit.com 460

percentage deviation of the object being tracked,

from the center pixel (-100 to 100) both horizontally

and vertically. This thread then adjusts the 2 servo

motor angles of the eyes such that the deviations is

zero. The 2 head servos are also adjusted such that

the deviations of the eye servo motors from its mean

position, is zero. The result is a tracking effect, where

the eyes look at the object first, and then the head

adjusts such that it is facing the object of interest,

much like a human reaction.

A. Image processing thread

We use a library that utilizes HOG (Histogram of

Oriented Gradients) [8], to detect faces, where each

pixel is compared with the surrounding pixels. Then,

an arrow id draws pointing in the direction of the

change in pixel brightness. The image is broken into

small squares of 16x16 pixels, each box containing

the gradient pointing in the major direction. This

turns the image into a simple representation. A

simple pattern matching is done with a standard face

HOG to find the location of the face (if any) in the

image. A bounding box is drawn around it and the

cropped image is sent to the face recognition

program.

Figure 10. Off-board Python flow chart

The face recognition program uses a pretrained Deep

Convolutional Neural Network that generates 128

measurements that are unique to each person[8].

These measurements are known as an encoding.

Initially, a sample image of a person and the label

(name) is given. The DNN produces the encoding

and stores it in a database. During runtime, when a

face is detected, the face is passed through the DNN

and the encoding is determined. A pattern matching

is performed with the produced encoding and the

database of encodings. If a match occurs with the

encoding, the person is labelled with the name given

at the beginning. If there are no matches, the person

is labelled as “unknown”. Therefore, when given a

person‟s sample image, and a label (their name), the

program can identify that person. The bounding box

around the person‟s face gives us the middle pixel

location of the face. The distance between this pixel

and the center pixel of the original image from the

camera, is calculated in x and y directions. This x and

y axis deviations are encoded and packed into a JSON

object and then sent to the RPi through the TCP

port, where it would be unpacked and used for

adjusting the servo motors.

Figure 11: Screenshot of face recognition test

showing identification of user by processing the

image on the GPU on a Windows 10 platform.

B. Chatbot thread

This part of the program has 3 main steps

i) Speech to text

ii) Cleverbot API

iii) Text to speech

We use the google API for Speech to text conversion.

Cleverbot is a chatterbot web application that uses

an artificial intelligence (AI) algorithm to have

conversations with humans. It was created by British

AI scientist Rollo Carpenter. Unlike some other

chatterbots, Cleverbot's responses are not pre-

programmed. Instead, it learns from human input.

Text generated by the STT service when an audio

input is given to the robot, is passed on to the

Volume 4 | Issue 6 | May-June 2018 | www.ijsrcseit.com 461

cleverbot JSON API. The API generates a response

which is a conversational response. This text

response is fed through a text-to-speech service in

python, using the library “pyttsx”.

V. OPERATION

When a person comes in front of the robot, the robot

looks for a face using the HOG algorithm. Once the

face is detected, the part of the image within the

bounding box of the face detection, is passed through

the face landmark estimation followed by pose

correction by basic image transformations. This

image is now used to generate face encodings[8] by

passing it through a D-CNN. The 128 measurements

are then looked up in the database of previously

recorded faces. If the encodings match any, the robot

addresses the person with their name from the

database. If the encodings do not match, a new entry

is made in the database and the robot prompts the

user to say their name. With the face detection, the

robot is programmed to look for the user‟s eyes using

Haar cascades[9], to indicate whether the user is

making eye contact with the robot. If found so, the

robot listens through its microphone. When the user

says something, the average energy of audio input

increases above the threshold. Listening stops when

the energy falls back to the normal energy,

indicating that the user has stopped speaking. This

part of the audio is sent to the STT service to convert

it to text. The text is then sent to the cleverbot API,

whose response is converted to speech and output

through the robot‟s speakers.

Figure 12. Screenshot of the output screen of

PyCharm showing the Chatbot thread verbose.

Figure 13. Charlie robot interacting with the user

while maintaining eye-contact.

Figure 14. Associative learning

There are a series of Artificial Neural Networks that

identifies objects, gestures, and helps in physical

control of the movement of its arms. When the robot

encounters a new object and a gesture command, its

Networks are evolved through Neuro Evolution to

accommodate this new information. When it is

presented with a previously encountered gesture, the

robot will be programmed to look for the object it is

field of view. Once found, a Visual Servo-ing

Network takes over, to control the robot‟s arm to

reach for it. Training of these Neural Networks is

done one after the other in the case of gesture and

object identification and will be done simultaneously

in the case of the servoing network and the PID

motor control. The Neural Networks depicted are

concerned with Gesture recognition, object

recognition and mechanical control of the robot‟s

arm, shown in purple, red and blue respectively.

Each output neuron of a neural network is built to

correspond to a certain predefined result. In the case

of the Gesture Identification NN, each result is the

inference that the input image is that of a hand-sign.

For the neural network to be “trained” to infer the

right result, the weight of the connections leading to

the output neuron associated with the expected

Increase motor angle 1

Decrease motor angle 1

Increase motor angle 2

Decrease motor angle 2

Volume 4 | Issue 6 | May-June 2018 | www.ijsrcseit.com 462

result is increased, promoting this network path in

the process. This method of deriving the expected

result by tweaking the connections is called back-

propagation. The same method is implemented in the

Object Recognition NN, with the connections to the

output neuron associated with the right object

encouraged in a similar fashion. The association

between the identified object and hand-sign is

established by displaying the sign and the object

consecutively, completing the training process.

VI. CONCLUSION

Our robotic platform can successfully manipulate its

arm, recognizes stored faces and can learn to

recognize new ones, and interact with the familiar

face aurally with the ease of an average human being

with an above-average amount of cheek. We expect

Charlie to be able to serve as a multi-purpose

platform for various interfacing operations because of

the versatility of programming of his on-board

microcomputer and the natural adaptability of his

humanoid arm. Though various automation

techniques have been developed, only a select few

have been implemented in humanoid form. We plan

on further developing the robot by adding more

social behaviors. A Neural network implementation

can greatly increase the robot‟s capacity of grasping

information such as objects. Current work is being

done on improving the Associative Learning

algorithm to make it more interactive, while

working on the mechanical design for greater

efficiency and cost reduction.

VII. REFERENCES

[1] Hirose, Masato, and Kenichi Ogawa. "Honda

humanoid robots development." Philosophical

Transactions of the Royal Society of London A:

Mathematical, Physical and Engineering Sciences

365.1850 (2007): 11-19.

[2] Kaneko, Kenji, et al. "Humanoid robot hrp-4-

humanoid robotics platform with lightweight

and slim body." Intelligent Robots and Systems

(IROS), 2011 IEEE/RSJ International Conference

on. IEEE, 2011.

[3] Lee, Kwan Min, et al. "Are physically embodied

social agents better than disembodied social

agents?: The effects of physical embodiment,

tactile interaction, and people's loneliness in

human–robot interaction." International Journal

of Human-Computer Studies 64.10 (2006): 962-

973.

[4] Robins, Ben, et al. "Robotic assistants in therapy

and education of children with autism: can a

small humanoid robot help encourage social

interaction skills?." Universal Access in the

Information Society 4.2 (2005): 105-120.

[5] International Journal of Computer Science &

Information Technology (IJCSIT), Vol 2, No 6,

December 2010 DOI : 10.5121/ijcsit.2010.2614

153 “Segmentation and object recognition using

edge detection techniques”

[6] Dalal, Navneet, and Bill Triggs. "Histograms of

oriented gradients for human detection."

Computer Vision and Pattern Recognition, 2005.

CVPR 2005. IEEE Computer Society Conference

on. Vol. 1. IEEE, 2005..

[7] Kazemi, Vahid, and Sullivan Josephine. "One

millisecond face alignment with an ensemble of

regression trees." 27th IEEE Conference on

Computer Vision and Pattern Recognition,

CVPR 2014, Columbus, United States, 23 June

2014 through 28 June 2014. IEEE Computer

Society, 2014.

[8] Schroff, Florian, Dmitry Kalenichenko, and

James Philbin. "Facenet: A unified embedding for

face recognition and clustering." Proceedings of

the IEEE conference on computer vision and

pattern recognition. 2015.

[9] Viola, Paul, and Michael Jones. "Rapid object

detection using a boosted cascade of simple

features." Computer Vision and Pattern

Recognition, 2001. CVPR 2001. Proceedings of

the 2001 IEEE Computer Society Conference on.

Vol. 1. IEEE, 2001.

