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ABSTRACT 
 

The objective of this paper is to document the development, design, and implementation of a humanoid 

interface to a robotic implementation of the right human forelimb, the purpose of which is to interact with its 

environment under programmed instructions by imitating the movements of an arm and engage users in 

conversations. The arm has 10 Degrees of Freedom in total and weighs 2 kilograms. The software driving this 

interface is put to action by a microcomputer primarily in the form of a chat-bot which aids in human-robot 

interaction orally real-time. The areas for future application of this include human-machine interaction in 

industry & medical, social, & hospitality settings. The necessary mechanisms for arm control and the rest are 

presented in this paper. 
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I. INTRODUCTION 

 

The need for robotics and automation has moved 

beyond the factory floor to enter relevance in almost 

all fields of human interest Giving an automation 

system a humanoid shape and function not only 

make their actions more comprehensible to the user, 

but also socially acceptable. Life-size humanoid 

robotics is the next avenue these field must explore. 

It essentially replicates the human element to 

complete tasks assigned to it, which the user can 

easily understand and exploit to the required extent. 

The self-funded project described in this paper 

attempts to do just that. Along with the arm, the 

robot built also boasts of a voice-driven intelligent 

chat-bot feature which deals with information in the 

aural and textual form. The service offers a 

conversational context-based response to make it 

appear more human. All this coupled with the 

movable camera housing modelled around a life-size 

human head has given the robotic interface a 

familiar look and feel leading the writers christening 

it with a relatable human name 'Charlie'. This paper 

outlines the design of the torso and its integration 

with the chat feature. 

 

II.  LITERATURE SURVEY 

One of the hallmark of a humanoid design was the 

Honda Asimo[1] developed by the Toyota Group, 

debuted in 2000. Several other humanoid robots 

were developed since. The HRP-4 Robot [2] is a 

humanoid consisting of 7DOF arms weighing about 

39Kgs. It uses complex mechanisms for actuating all 

the joints in the robot. However, we need to 

overcome the complexities of such designs and need 

to consider costs when designing these systems. We 

aim to achieve a focused human-robot interaction, 

initiated by an encounter such as eye contact, or a 

statement made in a tone of voice. A study [3] found 

that people evaluate a physical embodied social agent 

http://ijsrcseit.com/
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more positively than a disembodied social agent. 

Robots are being used in factories, they are being 

weaponized in military, and are also being sent to 

outer space. Yet, we do not have them in our homes. 

We need to make progress in the field of social 

robotics and our fascination towards humanoid 

robots and the affect it has to people forms our 

motivation for this work. 

III. HARDWARE DESIGN 

 

This is the design of the humanoid torso. Each of the 

robot‟s arms consists of a 3DOF shoulder joint, an 

elbow joint, and the wrist rotation, giving a total of 

5DOF per arm, excluding the movements of the 

fingers. Actuation of the robot‟s arm joints required 

high torque motors delivering over 40kg-cm force. A 

Johnson DC side-shaft geared motor meeting the 

required specifications were used in every joint. 

Potentiometers are used for position feedback, as a 

DC motor does not possess absolute positional 

control. 3D design is developed in Catia V5, a 3D 

modelling software.  

 
Figure 1. 3D Assembled CAD design. 

 

A. Hand 

Each finger is made of three hollow segments that 

act like a kinematic chain, mimicking a human 

finger. A tendon strand made of 3 beading wires runs 

over the pulleys and under the roofs of the segments. 

Pulling on this tendon causes the finger to fold. 

Another tendon runs below the pulleys and over the 

base of the segments. Pulling on this tendon causes 

the finger to undo the folding and bringing it to an 

open position. The tendons pass through the hollow 

palm, and then through the axis of the wrist gear. 

The wrist is actuated by a MG-995 servo motor, a 

common motor used in hobby robotics. 

 
Figure 2. Channels(hollow, gray) for tendons 

 

B. Forearm 

The forearm houses 5 MG-995 servo motors that 

actuate the fingers independently. The tendons from 

the wrist gear go through individual holes at the 

bottom of the skeletal structure, and guides them out 

at the top, where they would lead to their respective 

servo motors. Rotation of the servo clockwise pulls 

the actuation tendon and relaxes the other, and the 

opposite is true for a counter-clockwise rotation. The 

elbow joint is actuated by a high torque Johnson 

motor, held by the bicep assembly and the shaft is 

held by the forearm. A potentiometer is coupled 

with the motor shaft, on the opposite side. 

 

 
Figure 3. Cross-section of 3D model of the forearm 

 

C. Bicep 

The bicep houses the shoulder yaw-rotation DC 

motor. The feedback potentiometer is placed parallel 

with the axis of the motor shaft, coupled by gears 

having gear ratio 4:3. That is, a 180‟ rotation of the 

arm, causes a 270‟ rotation of the potentiometer shaft.  
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D. Shoulder 

Two DC motors constitute pitch and roll motions. 

The roll motion and its potentiometer feedback is 

achieved in the same way as the elbow design, with 

the potentiometer placed on the opposite side, along 

the axis of rotation. The pitch motor is located at the 

robot‟s clavicle, with its potentiometer directly 

under the shaft, coupled by gears in the ratio 1:1.  

 
Figure 4. CAD model of the shoulder 

 

E. Arm support and Sternum 

These set of parts are printed with the highest 

density setting since it holds the entire arm‟s weight. 

This portion houses the shoulder pitch rotation DC 

motor. To prevent the motor from tilting because of 

the arm‟s weight, an additional “sleeve” is inserted 

after inserting the motor and is bolted in place. 

Screws from the back panel and from the bottom 

secures the assembly firmly. 

 
Figure 5. Sternum design 

 

F. Face 

InMoov is a robot developed for artistic purposes by 

French sculptor Gael Langevin in September 2011 

(The first blueprint files were published in January 

2012 on thingiverse.com) and its files are under 

Creative Commons license. The face has provisions 

for neck rotation servo and the jaw movements. 

 

 
Figure 6. Assembled robot with right arm(till wrist) 

and Inmoov head. 

G. Electronics 

The two web-cams used are Microsoft HD-3000, for 

which the Inmoov eyes are designed. They provide 

superior quality images and have small form factor. 

The web-cams are plugged into the laptop computer 

where image processing takes place. The robot‟s on 

board Raspberry Pi and the laptop computer used to 

process images are connected to a LAN. Post image 

processing, necessary data like servo tilt angles for 

tracking, are transmitted to the Raspberry Pi through 

a TCP port. The RPi receives position values from 

the potentiometers through an Arduino Mega, an 

Atmel microcontroller board. 
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Figure 7. Electronics layout 

 

IV.  SOFTWARE DESIGN 

 

The main function of the Arduino is to read analog 

values and send them to the Rpi. This goal is to send 

these values in fewest number of bytes as possible, as 

frequently as possible. Failing which, the PID 

position control of joints fail. The ADC on the 

Arduino has a resolution of 10 bits for each channel. 

Serial communication only allows transfer of 8 bits at 

a time, therefore, each channel‟s value must be split 

into 2 bytes. The first byte contains the 2 MSBs of an 

analog value and the second byte contains the rest of 

8 bits. These two are then recombined at the RPi. 

The Arduino reads 8 such values from 8 

potentiometers corresponding to the joint motors in 

both arms. All 8 values are read and split into 2 bytes, 

adding up to 16 bytes. A delimiting byte is added, 

and all 17 bytes are sent to the RPi after each cycle. 

 

The RPi‟s software consists of a multi-threaded 

program, with each thread running on an infinite 

loop. This is done so because multiple independent 

tasks need to be executed without waiting for 

unrelated actions. All threads, share a set of global 

variables. These variables are volatile, that is, their 

value can be changed by any thread at any time, 

making them unpredictable. The main global 

variable is the „setpoint‟, controlled by the GUI 

thread, and sequence thread. The GUI allows manual 

control of joint angles useful for testing and 

debugging. The sequence thread is a program snippet 

that can move the robot arms in a pre-recorded 

motion. It does so by iterating through each position 

in the list of target positions, assigning the setpoint to 

the target positions for each joint, and pausing the 

sequence thread for the specified amount to allow 

the arm to come to the set position. The PID thread 

takes care of bringing the arm to the setpoints as it is 

being continuously scanned. It receives the analog 

position values from the Arduino. This thread waits 

for 17 bytes to get queued in the serial buffer before 

processing them. 

 
Figure 8. Flowchart of the code running on 

Arduino 

 
Figure 9. RPi code flow chart 

 

These are 8 position values (2 bytes each) and a 

known delimiting byte, 17 bytes in total per scan. If 

the 17th byte is not the delimiting byte, the data is 

considered corrupted and the serial buffer is flushed 

to allow fresh data in the next cycle. The PID thread 

does not modify the setpoints, it only accesses it. 

 

The tracking thread starts a TCP connection to the 

server on the laptop which has the cameras 

connected to it. From there, it listens to the port for 

incoming messages. The server sends JSON objects to 

the RPi (the client) when a specific object such as a 

face or a hand sign is in its field of view after 

processing the images from the cameras. The 

received JSON objects from the server contains the 
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percentage deviation of the object being tracked, 

from the center pixel (-100 to 100) both horizontally 

and vertically. This thread then adjusts the 2 servo 

motor angles of the eyes such that the deviations is 

zero. The 2 head servos are also adjusted such that 

the deviations of the eye servo motors from its mean 

position, is zero. The result is a tracking effect, where 

the eyes look at the object first, and then the head 

adjusts such that it is facing the object of interest, 

much like a human reaction. 

 

A. Image processing thread 

We use a library that utilizes HOG (Histogram of 

Oriented Gradients) [8], to detect faces, where each 

pixel is compared with the surrounding pixels. Then, 

an arrow id draws pointing in the direction of the 

change in pixel brightness. The image is broken into 

small squares of 16x16 pixels, each box containing 

the gradient pointing in the major direction. This 

turns the image into a simple representation. A 

simple pattern matching is done with a standard face 

HOG to find the location of the face (if any) in the 

image. A bounding box is drawn around it and the 

cropped image is sent to the face recognition 

program. 

 
Figure 10. Off-board Python flow chart 

 

The face recognition program uses a pretrained Deep 

Convolutional Neural Network that generates 128 

measurements that are unique to each person[8]. 

These measurements are known as an encoding. 

Initially, a sample image of a person and the label 

(name) is given. The DNN produces the encoding 

and stores it in a database. During runtime, when a 

face is detected, the face is passed through the DNN 

and the encoding is determined. A pattern matching 

is performed with the produced encoding and the 

database of encodings. If a match occurs with the 

encoding, the person is labelled with the name given 

at the beginning. If there are no matches, the person 

is labelled as “unknown”. Therefore, when given a 

person‟s sample image, and a label (their name), the 

program can identify that person. The bounding box 

around the person‟s face gives us the middle pixel 

location of the face. The distance between this pixel 

and the center pixel of the original image from the 

camera, is calculated in x and y directions. This x and 

y axis deviations are encoded and packed into a JSON 

object and then sent to the RPi through the TCP 

port, where it would be unpacked and used for 

adjusting the servo motors. 

 

Figure 11: Screenshot of face recognition test 

showing identification of user by processing the 

image on the GPU on a Windows 10 platform. 

 

B. Chatbot thread  

This part of the program has 3 main steps  

i) Speech to text 

ii) Cleverbot API 

iii) Text to speech 

We use the google API for Speech to text conversion. 

Cleverbot is a chatterbot web application that uses 

an artificial intelligence (AI) algorithm to have 

conversations with humans. It was created by British 

AI scientist Rollo Carpenter. Unlike some other 

chatterbots, Cleverbot's responses are not pre-

programmed. Instead, it learns from human input. 

Text generated by the STT service when an audio 

input is given to the robot, is passed on to the 
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cleverbot JSON API. The API generates a response 

which is a conversational response. This text 

response is fed through a text-to-speech service in 

python, using the library “pyttsx”.  

 

V. OPERATION 

 

When a person comes in front of the robot, the robot 

looks for a face using the HOG algorithm. Once the 

face is detected, the part of the image within the 

bounding box of the face detection, is passed through 

the face landmark estimation followed by pose 

correction by basic image transformations. This 

image is now used to generate face encodings[8] by 

passing it through a D-CNN. The 128 measurements 

are then looked up in the database of previously 

recorded faces. If the encodings match any, the robot 

addresses the person with their name from the 

database. If the encodings do not match, a new entry 

is made in the database and the robot prompts the 

user to say their name. With the face detection, the 

robot is programmed to look for the user‟s eyes using 

Haar cascades[9], to indicate whether the user is 

making eye contact with the robot. If found so, the 

robot listens through its microphone. When the user 

says something, the average energy of audio input 

increases above the threshold. Listening stops when 

the energy falls back to the normal energy, 

indicating that the user has stopped speaking. This 

part of the audio is sent to the STT service to convert 

it to text. The text is then sent to the cleverbot API, 

whose response is converted to speech and output 

through the robot‟s speakers.  

 
Figure 12. Screenshot of the output screen of 

PyCharm showing the Chatbot thread verbose. 

 

 
Figure 13. Charlie robot interacting with the user 

while maintaining eye-contact. 

 
Figure 14. Associative learning 

 

There are a series of Artificial Neural Networks that 

identifies objects, gestures, and helps in physical 

control of the movement of its arms. When the robot 

encounters a new object and a gesture command, its 

Networks are evolved through Neuro Evolution to 

accommodate this new information. When it is 

presented with a previously encountered gesture, the 

robot will be programmed to look for the object it is 

field of view. Once found, a Visual Servo-ing 

Network takes over, to control the robot‟s arm to 

reach for it. Training of these Neural Networks is 

done one after the other in the case of gesture and 

object identification and will be done simultaneously 

in the case of the servoing network and the PID 

motor control. The Neural Networks depicted are 

concerned with Gesture recognition, object 

recognition and mechanical control of the robot‟s 

arm, shown in purple, red and blue respectively. 

Each output neuron of a neural network is built to 

correspond to a certain predefined result. In the case 

of the Gesture Identification NN, each result is the 

inference that the input image is that of a hand-sign. 

For the neural network to be “trained” to infer the 

right result, the weight of the connections leading to 

the output neuron associated with the expected 

Increase motor angle 1 

Decrease motor angle 1 

Increase motor angle 2 

Decrease motor angle 2 
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result is increased, promoting this network path in 

the process. This method of deriving the expected 

result by tweaking the connections is called back-

propagation. The same method is implemented in the 

Object Recognition NN, with the connections to the 

output neuron associated with the right object 

encouraged in a similar fashion. The association 

between the identified object and hand-sign is 

established by displaying the sign and the object 

consecutively, completing the training process. 

 

VI.  CONCLUSION 

 

Our robotic platform can successfully manipulate its 

arm, recognizes stored faces and can learn to 

recognize new ones, and interact with the familiar 

face aurally with the ease of an average human being 

with an above-average amount of cheek. We expect 

Charlie to be able to serve as a multi-purpose 

platform for various interfacing operations because of 

the versatility of programming of his on-board 

microcomputer and the natural adaptability of his 

humanoid arm. Though various automation 

techniques have been developed, only a select few 

have been implemented in humanoid form. We plan 

on further developing the robot by adding more 

social behaviors. A Neural network implementation 

can greatly increase the robot‟s capacity of grasping 

information such as objects. Current work is being 

done on improving the Associative Learning 

algorithm to make it more interactive, while 

working on the mechanical design for greater 

efficiency and cost reduction. 
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