
CSEIT1952228 | Received : 20 March 2019 | Accepted : 12 April 2019 | March-April -2019 [5 (2) : 1176-1185]

International Journal of Scientific Research in Computer Science, Engineering and Information Technology

© 2019 IJSRCSEIT | Volume 5 | Issue 2 | ISSN : 2456-3307

DOI : https://doi.org/10.32628/CSEIT1952228

1176

A Survey on Efficient Concurrency Control Algorithm in Distributed Database

Systems
Rebecca Nyasuguta Arika, W. Cheruiyot

Jomo Kenyatta University of Agriculture and Technology, Nairobi, Kenya

ABSTRACT

Transaction commit protocols help in reaching an agreement among the participating nodes when a transaction

has to be committed or aborted. To initiate an agreement each participating node is asked to vote its decision on

the operations on its transactional fragment. The participating nodes can decide to either commit or abort an

ongoing transaction. In case of a node failure, the active participants take essential steps such as running the

termination protocol to preserve database correctness. This paper sought to investigate the current distributed

databases commit protocols such as 2PC and 3PC in order to pin-point their shortcomings. For instance, 2PC

suffers from blocking of participant site in case of coordinator failure and increased latency due to forced writes

of logs. On its part, 3PC suffers more communication overhead due to extra pre-commit phase. Based on these

setbacks, an efficient protocol is suggested towards the end of this paper that it believed to address some of the

challenges such as blocking and extra message exchange between communicating nodes.

Keywords : Commit Protocols, 2PC, 3PC, Distributed Databases

I. INTRODUCTION

A distributed database is a single logical database that

is spread physically across computers in multiple

locations, and these computers are in turn connected

by a data communication network [13]. On the other

hand, distributed database systems (DDBS) are

systems that have their data distributed and

replicated over several locations [3]. The commit

processing in a Distributed Real Time Database

(DRTDBS) can significantly increase execution time

of a transaction and as such, designing a good commit

protocol is important in these databases.

Reference [17] shows that transactions that miss their

deadlines before the completion of processing are

aborted while all the successful transactions are

committed. The performance of the commit protocol

is usually measured in terms of number of

transactions that complete before their deadlines. If

the transactions run across different sites, it may

commit at one site and may drop at another site,

leading to an inconsistent transaction. Since

transactions in a real time database system have

deadlines to process the workloads, they need to

process transactions before these deadlines expire.

Therefore, according to [4], distributed database

systems implement a transaction commit protocol to

ensure transaction atomicity.

Reference [18] explained that in distributed databases,

in situations where there are no failures, all

transactions will complete successfully. However, if a

transaction may not complete its execution

successfully, such a transaction is said to have aborted.

In ensuring the atomicity property, an aborted

transaction does not have to effect on the state of the

database. This is further supported by [18]. This

means that any changes that the aborted transaction

made to the database have to be undone. Since the

changes caused by an aborted transaction need to be

undone, this transaction is said to have rolled back. It

http://ijsrcseit.com/
http://ijsrcseit.com/
http://ijsrcseit.com/
https://doi.org/10.32628/CSEIT1952228

Volume 5, Issue 2, March-April -2019 | http://ijsrcseit.com

Rebecca Nyasuguta Arika, W. Cheruiyot / Int J Sci Res CSE & IT. March-April-2019 ; 5(2) : 1176-1185

 1177

is part of the responsibility of the recovery scheme to

manage transaction aborts. On the other hand, if a

transaction completes its execution successfully, it is

said to have committed. A committed transaction is a

transaction that has performed updates, transforms

the database into a new consistent state, which must

persist even if there is a system failure [16].

There are two types of commit protocols used for

concurrency control, Two Phase commit protocol

(2PC) the Three Phase commit protocol (3PC). In

2PC commit protocol, the sites having more queries

become primary site and those which are having

fewer queries become secondary sites. There are two

phases in two phase commit protocol: the voting

phase and the commit phase. During the voting

phase, the primary site asks all secondary sites to vote

either to commit or to abort after which the

secondary sites cast their votes. On the commit

phase, based on the votes cast by secondary sites,

coordinator decides to commit if all secondary sites

votes commit or abort if any of the secondary sites

votes to abort and after making decision coordinator

notifies the result to all the sites.

The 2PC protocol has a blocking problem in which

either the coordinator or some participating site is

blocked. The 3PC protocol was introduced as a

remedy to this blocking challenge and can therefore

be regarded as an extension of 2PC protocol. It

introduces an extra phase which ensures the non

blocking property of this protocol. The site on which

transaction is generated becomes coordinator and

other becomes cohorts [5].

II. RELATED WORK

In their paper, [11] proposed a new architecture for

2PC by employing a Backup coordinator, which

reduces the transaction blocking considerably.

However in worst case, the blocking can occur in the

backup coordinator. If such a rare case occurs, the

client has to wait until the recovery of either the

coordinator or the backup coordinator. In this model,

new component called connection manager, keeps on

monitoring the coordinator and backup coordinator.

Whenever the coordinator fails, the transactions are

automatically transferred to the backup coordinator

with the help of connection manager and vice versa

[6]. In turn connection manager will have a common

log file for both coordinator and backup coordinator.

Synchronization between them will be achieved with

the help of connection manager.

In their paper, [7] proposed a Backup Commit (BC)

protocol by including backup phase to 2PC protocol.

In this, one backup site is attached to each

coordinator site. After receiving responses from all

participants in the first phase, the coordinator

communicates its decision only to its backup site in

the backup phase. Afterwards, it sends final decision

to participants. When blocking occurs due to the

failure of the coordinator site, the participant sites

consult coordinator’s backup site and follow

termination protocols. In this way, BC protocol

achieves non-blocking property in most of the

coordinator site failures. However, in the worst case,

the blocking can occur in BC protocol when both the

coordinator and its backup site fail simultaneously. If

such a rare case occurs, the participants wait until the

recovery of either the coordinator site or the backup

site. BC protocol suits best for DDBS environments in

which sites fail frequently and messages take longer

delivery time. Through simulation experiments it has

been shown that BC protocol exhibits superior

throughput and response time performance over 3PC

protocol and performs closely with 2PC protocol [14].

III. METHODOLOGY

In this paper, a number of research papers in the field

of commit protocols including 1PC, 2PC and 3PC

were examined. This facilitated the comparisons of

these three most common protocols together with the

http://www.ijsrcseit.com/

Volume 5, Issue 2, March-April -2019 | http://ijsrcseit.com

Rebecca Nyasuguta Arika, W. Cheruiyot / Int J Sci Res CSE & IT. March-April-2019 ; 5(2) : 1176-1185

 1178

other protocols that have been proposed over the

years by researchers in this field.

A. One phase commit protocol

Reference [2] explains that in one phase commit

protocol (IPC), the cost of atomic commit is reduced

by eliminating the voting phase of 2PC: two

communication steps, together with their associated

forced log writes, are thus eliminated. Despite its

efficiency, 1PC has been largely ignored in the

implementation of distributed transactional systems,

mainly due to the strong assumptions made by 1PC

protocol designers about transactional processing. For

instance, both Coordinator Log (CL) and Implicit

Yes-Vote (IYV) protocols assume that participants in

a transaction externalize their log records and follow

a strict two-phase locking concurrency control.

According to [5], these assumptions are unrealistic in

most existing transactional systems.

The ideal scenario where 1PC can be utilized instead

of 2PC is when there is only a single participant in

which short-lived transactions involving only one

participant can commit without requiring initial

prepare phase. As such, there is no overhead to check

whether the participant is prepared to either commit

or rollback. As [9] points out that several variations of

1PC protocol have been proposed. The Early Prepare

(EP) protocol forces each cohort to enter a prepare

state after the execution of each operation. It makes

cohort’s vote implicitly YES and this protocol exploits

the Presumed Commit (PC) as well. Nevertheless, a

coordinator may have to force multiple membership

records, because the transaction membership may

grow as transaction execution progresses. Above all,

the main drawback comes from the fact that the log

of each operation has to be written in the cohort’s log

disk per operation, and this leads to a serious disk

blocking time. Only if every server has a stable

storage so that log forces are free, EP can be

considered to be used.

B. Two Phase Commit Protocol

The 2PC is a distributed algorithm used in computer

networks and distributed database systems,

particularly when simultaneous data updates are to

be applied within a distributed database. In this

protocol, one node acts as the coordinator (master)

and all the other nodes in the network are called

participants (slaves). In its first phase, all these

participants agree or disagree with the coordinator to

commit (vote yes or no) while in the second phase

they complete the transaction simultaneously by

getting the commit or the abort signal from the

coordinator.

Reference [5] explains that available protocols for

handling distributed namespace operations such as

the two phase commitment protocol are expensive

since they require the exchange of a large number of

messages between metadata servers as well as

synchronous writes to stable storage to log vital

information. Moreover, such protocols adopt locking

schemes to protect the resource during the operation,

which force multiple operations on the same

directory to be serialized. This severely impacts the

performance of high performance computing

applications in typical scenarios such as high rate of

file create operations. This is further confirmed by [1]

who noted the increased latency due to forced writes

of logs.

Reference [3] shows that the 2CP has two types of

nodes to complete its processes: the coordinator and

the subordinate. The coordinator’s process is attached

to the user application, and communication links are

established between the subordinates and the

coordinator. The 2PC goes through two phases with

the first phase being the prepare phase, in which the

coordinator of the transaction sends a prepare

message. Here, the coordinator sends a Prepare

message along with the transaction to all participants

and asks each one of them to cast their vote for

commit or abort. If participant can commit the

transaction, Vote-commit is sent to the coordinator

http://www.ijsrcseit.com/

Volume 5, Issue 2, March-April -2019 | http://ijsrcseit.com

Rebecca Nyasuguta Arika, W. Cheruiyot / Int J Sci Res CSE & IT. March-April-2019 ; 5(2) : 1176-1185

 1179

and if participants cannot commit, Vote- abort is sent

to the coordinator. The second phase is decision-

making phase in which the coordinator issues a

commit message, if all the nodes can execute the

transaction, or an abort message, if at least one

subordinate node cannot execute the required

transaction. Decision for commit or abort is taken by

the coordinator in this phase. If Vote-commit is

received from all the participants, then Global-

commit is send to all the participants and if at least

one Vote-abort is received, then coordinator send

Global abort to all those voted for commit. In

addition, the coordinator asks for acknowledgement

(Ack) from participants. If a participant receives

Global-commit, it commits the transaction and Ack is

sent to the coordinator. In case participant receives

Global-abort, it aborts the transaction. Figure 1

shows two-phase commit protocol.

Figure 1 : Two- phase commit process

Two–phase commit protocol ensures atomicity and

can handle network failures. But it suffers from

blocking of participant site in case of coordinator

failure, increased latency due to forced writes of logs

and more communication overhead as compared to

simple optimistic protocol. Figure 2 presents the state

diagram representation of the 2PC protocol. It also

shows the set of possible states (and transitions) that a

coordinating node and the participating nodes follow,

in response to a transaction commit request.

Figure 2 : 2PC Protocol State Diagrams

While the solid lines are employed to represent the

state transitions, the dotted lines are utilized to

represent the inputs or outputs to the system. The

coordinator starts the commit protocol on transaction

completion, and requests all the participants to

commence the same by transmitting Prepare

messages. In case of multiple failures, the 2PC

protocol has been proved to be blocking. For instance,

if the coordinator and a participant fail, and if the

remaining participants are in the READY state, then

they cannot make progress (blocked), as they are

unaware about the state of the failed participant.

http://www.ijsrcseit.com/

Volume 5, Issue 2, March-April -2019 | http://ijsrcseit.com

Rebecca Nyasuguta Arika, W. Cheruiyot / Int J Sci Res CSE & IT. March-April-2019 ; 5(2) : 1176-1185

 1180

The 2PC protocol has been proved to be blocking

under multiple node failures. To illustrate this

behavior, a consideration is made of a simple

distributed database system with a coordinator C and

three participants X, Y and Z. An assumption of a

snapshot of the system when C receives Vote-commit

from all the participants is made, and hence it decides

to send Global-Commit message to all the

participants. Unfortunately, C fails after transmitting

Global-Commit message to X, but before sending

messages to Y and Z. The participant X on receiving

the Global-Commit message commits the transaction.

Now, suppose X fails after committing the transaction

while nodes Y and Z timeout due to no response from

the coordinator? These two would be blocked

indefinitely, as they require node X to reach an

agreement. They cannot make progress, as they

neither have knowledge of the global decision nor

the state of node X before failure. This situation can

be prevented with the help of the three-phase

commit protocol [10].

A. Three Phase Commit Protocol

This blocking characteristic of the 2PC protocol

endangers database availability, and makes it

unsuitable for use with the partitioned databases. The

inherent shortcomings of the 2PC protocol led

towards the design of resilient 3PC protocol which

introduces an additional PRE-COMMIT state

between the READY and COMMIT states. This

ensures that there is no direct transition between the

non-committable and committable states. This simple

modification makes the 3PC protocol non-blocking

under node failures. Moreover, [12] explained the

three phases of 3PC protocol: the voting phase,

prepare to commit phase and the decision phase.

During the voting phase, the site at which transaction

originates becomes coordinator and then it asks the

other cohorts to vote to either commit or to abort.

The cohorts cast their votes to coordinator and based

on the voting done by cohorts, coordinator decides to

commit the transactions if all cohorts are in favour of

commit. Otherwise it decides to abort even if any of

the cohorts is against of committing the transaction.

During the prepare to commit phase, the coordinator

notifies its decision to all cohorts .If the decision is to

committing the transaction, then a message “enter

into ready to commit stage” is sent to all cohorts. The

final phase is the decision phase in which if the

decision made by coordinator is to commit the

transaction, then it will send global-commit to all

cohorts and wait for receiving their

acknowledgement. After receiving their

acknowledgement, it decides to commit the

transaction. If the decision made by coordinator is to

abort the transaction, then it will send global-abort to

all sites and abort the transaction. In this protocol the

final decision is made after receiving the

acknowledgements [15]

Reference [9] shows that 3PC is a non-blocking

protocol, in which a new state called pre-commit is

introduced for the coordinator in. The coordinator

gets to this pre-commit state only if all other

participants have voted to commit (yes vote). In case

this state is not reached, the participants abort and

release the blocked resources after a specific time.

When the coordinator gets to the pre-commit state,

there is only one option to abort the transaction and

that is a timeout, which corresponds to a failure of a

participant, otherwise the transaction gets completed

with an acknowledgement from the participants. It is

also possible that the coordinator fails at this state;

even then it will proceed for global commit [8].

The 3PC avoid blocking by introducing additional

round of message exchange and delaying the

prepared state until processes receive pre-commit

message. Unlike 2PC, 3PC does not immediately

commit if all participants send vote-commit. Instead,

the coordinator sends out prepare-to-commit message,

on receiving this message participants enter into Pre-

commit state and send an acknowledgement. After

receiving acknowledgement from all participants,

coordinator sends commit and participants commit

the transaction as shown in Figure 3.

http://www.ijsrcseit.com/

Volume 5, Issue 2, March-April -2019 | http://ijsrcseit.com

Rebecca Nyasuguta Arika, W. Cheruiyot / Int J Sci Res CSE & IT. March-April-2019 ; 5(2) : 1176-1185

 1181

However, the 3PC protocol acts as the major

performance suppressant in the design of efficient

distributed databases. It can be easily observed that

the addition of the PRE-COMMIT state leads to an

extra phase of communication among the nodes. This

violates the need of an efficient commit protocol for

geo-scale systems.

Figure 3 : Three-Phase Commit Protocol

In the first phase, the coordinator and the cohorts,

perform the same set of actions as in the 2PC protocol.

Once the coordinator checks all the votes, it decides

whether to abort or commit the transaction. If the

decision is to abort, the remaining set of actions

performed by the coordinator (and the cohorts) are

similar to the 2PC protocol. However, if the

coordinator decides to commit the transaction, then

it first transmits a Prepare-to-Commit message, and

adds a pre-commit entry to the log. The cohorts on

receiving the Prepare-to-Commit message, move to

the PRE-COMMIT state, add a corresponding pre-

commit entry to the log, and acknowledge the

message reception to the coordinator. The

coordinator then sends a Global-Commit message to

all the cohorts and the remaining set of actions are

similar to the 2PC protocol.

IV. PROTOCOLS COMPARISONS

Table 1: Comparison Table for the Various

Commit Protocols

Parameters 2PC 3PC

Atomicity Violates the atomicity

at the time of

multiple site failures

Violates the

atomicity at

the time of

multiple site

failures

Message

exchange

Has 4(𝑛 − 1)

messages exchange

Has 5(𝑛 − 1)

messages due

to extra phase

PRE-

COMMIT

Latency Medium latency High latency

Blocking High blocking under

multiple node failures

Non- blocking

under node

failures by

adding extra

(PRE-

COMMIT)

phase

Communicatio

n overhead

Medium High

Log writes 2𝑛 log writes 2𝑛 log writes

Complexity Less complex and less

costly to implement

More complex

and costly to

implement

Performance More performance

compared to 3PC

Less

performance

compared to

2PC

http://www.ijsrcseit.com/

Volume 5, Issue 2, March-April -2019 | http://ijsrcseit.com

Rebecca Nyasuguta Arika, W. Cheruiyot / Int J Sci Res CSE & IT. March-April-2019 ; 5(2) : 1176-1185

 1182

As compared to 2PC protocol, BC protocol requires

extra messages and time duration, essentially to

communicate with the backup site. However, as

compared to 3PC protocol, independent of number of

participants, BC protocol requires only two messages

and fixed time duration during the second phase. In

BC protocol, the latency during the second phase is

considerably reduced as compared to 3PC protocol.

In addition, by making the nearby site to the

coordinator as the backup site, the latency can be

minimized. This brings the performance of BC

protocol close to 2PC protocol by achieving non-

blocking property in most of the coordinator failures.

The 2PC is blocking because a transaction’s progress

is curtailed due to the coordinator’s failure when the

participant is in the ready-to-commit state. On the

other hand, 3PC is said to be non-blocking but both

of these protocols violate the important property of

atomicity at the time of multiple site failures for 3PC

and single site failure for 2PC.

The key difference between the 2PC and 3PC

protocol is the PRE-COMMIT state, which makes the

latter non-blocking. The design of 3PC protocol is

based on the Skeen’s design of a non-blocking

commit which dictate that: no state should be

adjacent to both the ABORT and COMMIT states,

and that no non-committable state should be adjacent

to the COMMIT state. These requirements motivated

Skeen to introduce the notion of a new committable

state (PRE-COMMIT) to the 2PC state transition

diagram. The existence of PRE-COMMIT state makes

the 3PC protocol non-blocking.

The above mentioned multi-node failure case does

not indefinitely block the nodes Y and Z which are

waiting in the READY state. The nodes Y and Z can

make safe progress by aborting the transaction as

they are assured that the node X could not have

committed the transaction. Such a behavior is

implied by the principle that no two nodes could be

more than one state transition apart. The node X is

guaranteed to be in one of the following states:

INITAL, READY, PRE-COMMIT and ABORT, at the

time of failure. This indicates that node X could not

have committed the transaction, as nodes Y and Z are

still in the READY state. In 3PC, the coordinator

sends the Global-Commit message after it transmits

Prepare to- commit message to all the nodes.

Interestingly, if either of nodes Y or Z is in the PRE-

COMMIT state, then they can actually commit the

transaction. However, it can be easily observed that

the non-blocking characteristic of the 3PC protocol

comes at an additional cost, an extra round of

handshaking.

The 2PC and 3PC protocols can also be compared

using six parameters: blocking, message exchanges,

communication overhead, log writes, complexity and

performance. In terms of blocking, 2PC protocol

causes blocking of participants site when coordinator

site fails while 3PC avoid blocking by adding an extra

phase called Pre-commit. Concerning message

exchanges, taking n to be the number of participants,

2PC has 4(𝑛 − 1) messages exchange comprising of

𝑛 − 1 messages in Vote-request, 𝑛 − 1 in local

decision for commit or abort, 𝑛 − 1 in Global-

commit/Global-abort and 𝑛 − 1 messages exchange

for ack. 3PC commit protocol causes 5(𝑛 − 1)

messages to exchange as compared to 4(𝑛 − 1) in

2PC. The extra 𝑛 − 1 message exchanges in 3PC are

due to extra phase in 3PC.

In terms of communication overhead, 3PC has more

communication overhead due to an extra phase as

compared to 2PC protocol while for the case of log

writes; both 2PC and 3PC have 2𝑛 log writes.

Considering complexity, 3PC protocol is more

complex and costly to implement compared to 2PC

protocol while in terms of performance, 3PC protocol

has more message exchanges which result in less

performance as compared to 2PC. However, 3PC’s

performance is superior to that of 2PC in case of the

failure of coordinator site.

http://www.ijsrcseit.com/

Volume 5, Issue 2, March-April -2019 | http://ijsrcseit.com

Rebecca Nyasuguta Arika, W. Cheruiyot / Int J Sci Res CSE & IT. March-April-2019 ; 5(2) : 1176-1185

 1183

V. CHALLENGES OF THE CURRENT COMMIT

PROTOCOLS

The literature reviewed has pointed out that there are

two problems with the Two-phase Commit Protocol,

which include blocking and state inconsistency. The

2PC protocol goes to a blocking state by the failure of

the coordinator when the participants are in an

uncertain state. The participants keep locks on some

resources until they receive the next message from

the coordinator after its recovery. In most cases, this

happens due to coordinator’s failure when the

participant is in the ready-to-commit state. On the

other hand, state inconsistency crops in when its

global state vector contains both the commit and

abort states. This inconsistency can be observed using

a state vector, particularly when the participant is at

its pre-commit state and fails. The coordinator shows

the committed state after sending commit message

but for the failed participant the protocol is declared

non-resilient for assigning new state.

The 2PC protocol is blocking under multiple failures

and although 3PC addresses this problem, the

database community is still reluctant to use the 3PC

protocol, as it acts as a scalability bottleneck in the

design of efficient transaction processing systems.

The 3PC protocol is problematic only when there are

multiple sites failures. As an illustration, suppose the

coordinator is in pre-commit state and fails just after

sending a commit message and the slave also fails just

before or after receiving this message. By its failure,

the slave moves to the aborted state but according to

the protocol specifications, the coordinator goes to

the committed state, either it fails or receives

acknowledgement. Hence, the coordinator moves to

the committed state without receiving

acknowledgement and the failed slave moves to the

aborted state without sending the acknowledgement.

In this way, coordinator and participant show

different final states due to their failures.

VI. PROPOSED PROTOCOL

Based on the shortcomings noted in the current

commit protocols, this paper proposes a commit

protocol with a number of salient features to address

these setbacks. To start with, a participant node

cannot make a direct transition from the INITIAL

state to the ABORT state. Secondly, the cohorts,

irrespective of the global decision, always forward it

to every participant. Thirdly, if the cohorts receive

global decision from other participants, they need not

wait for message from the coordinator. In addition,

there will be some hidden states, Transmit-A and

Transmit- C, only after which a node aborts or

commits the transaction respectively.

The suggested protocol will be able to first count the

number of abort votes given from participants and if

this number is less than a given threshold, then for

each one of these participants, the transaction should

be executed for second time by sending a prepare

message. In cases where majority of the participants

will have voted commit, this message will not be sent

to all the participants at a later time to execute this

transaction.

Another feature of the proposed protocol is the

Transaction Information Table (TIT) that will have

three fields: Transaction Number, Value and site ID.

Each transaction will have a unique number to

identify it while the value field for each site will be

either complete (if the transaction commit at that

site) or incomplete (if the transaction abort at that

site). On the other hand, each site will have a unique

number for identification purpose.

The message passing process will begin by having the

coordinator send message (including ID and

transaction number) to inconsistent site asking the

site to complete the transaction. The inconsistent site

will then forward this message (including transaction

number) to its nearest site for updating. Finally, the

http://www.ijsrcseit.com/

Volume 5, Issue 2, March-April -2019 | http://ijsrcseit.com

Rebecca Nyasuguta Arika, W. Cheruiyot / Int J Sci Res CSE & IT. March-April-2019 ; 5(2) : 1176-1185

 1184

inconsistent site will send this message (together

with transaction number) to coordinator after

completing the transaction.

The 3PC protocol acts as the major performance

suppressant in the design of efficient distributed

databases. However, it was observed that the addition

of the pre-commit state leads to an extra phase of

communication among the nodes. This violates the

need of an efficient commit protocol for geo-scale

systems. The proposed protocol will leverage 2PC and

3PC to achieve non-blocking characteristics. Two

design issues will be important in this respect: to

delay the commitment of updates to the database

until the transmission of global decision to all the

participating nodes, and the secondly to induce

message redundancy in the network. Message

redundancy will be introduced by ensuring that each

participating node forwards the global decision to all

the other participants (including the coordinator)

before they commit.

The proposed protocol will be initiated by the

coordinator node by sending the prepare message to

each of the cohorts and shifting to the ready state.

When a cohort receives the prepare message, it will

send its decision to the coordinator, and moves to the

ready state. On receiving the responses from each of

the cohorts, the coordinator will first transmit the

global decision to all the participants, and then

commits (or aborts) the transaction. Each of the

cohorts on receiving a response from the coordinator,

first forward the global decision to all the participants

(and the coordinator), and then commit (or abort) the

transaction locally.

To facilitate recovery during node failures, multiple

log entries will be introduced. Since this protocol

permits the coordinator to commit as soon as it has

communicated the global decision to all the other

nodes, the coordinator does not need to wait for the

acknowledgments. In case a node timeouts while

waiting for a message, it executes the termination

protocol.

VII. CONCLUSION

This paper sought to investigate the challenges of the

current commit protocols in a distributed database

environment. It was noted that the 2PC protocol

suffers from blocking of participant site in case of

coordinator failure, increased latency due to forced

writes of logs and more communication overhead as

compared to simple optimistic protocol. On its part,

the 3PC protocol’s addition of the PRE-COMMIT

state leads to an extra phase of communication

among the nodes. This violates the need of an

efficient commit protocol for geo-scale systems. As

such, an efficient protocol that is both non-blocking

and utilizing less message exchanges is suggested.

Future work in this area will involve the

implementation and evaluation of the proposed

protocol in real distributed database environment.

VIII. REFERENCES

[1]. Ashay. M. Yogesh, R. “Concurrency Control

and Security Issues in Distributed Database

Systems,” International Journal of Engineering

Development and Research, Vol.4, no. 2, pp.

40-44, 2016.

[2]. Chirag, N. “Enabling One-Phase Commit (1PC)

Protocol for Web Service Atomic Transaction

(WS-AT),”. Master's Thesis, Pp. 1-75, 2014.

[3]. Christos, P. “An Algorithm for the Distributed

Two-Phase Commit Protocol,” International

Journal of Computer Science and Information

Technology Research. Vol. 4, Issue 3, pp. 233-

244, 2016.

[4]. Fadia, A., Ahmed. K, Khalid. K, “A survey of

Commit Protocols in Distributed Real Time

Database Systems”. International Journal of

Computer Trends and Technology. Vol. 31, no.

2, pp. 61-66, 2016.

http://www.ijsrcseit.com/

Volume 5, Issue 2, March-April -2019 | http://ijsrcseit.com

Rebecca Nyasuguta Arika, W. Cheruiyot / Int J Sci Res CSE & IT. March-April-2019 ; 5(2) : 1176-1185

 1185

[5]. Giuseppe, C., Matthias. G., Sai. N, Andr´e. B.,

“One Phase Commit: A Low Overhead Atomic

Commitment Protocol for Scalable Metadata

Services. IEEE International Conference on

Cluster Computing Workshops. Pp. 16-24,

2012.

[6]. Gupta, K, Sheetlani, J, Gupta, D. Shukla,B.,

“Concurrency Control and Security Issues of

Distributed Databases Transaction”. Research

Journal of Engineering Sciences. Vol 1, pp. 70-

73. Aug. 2012.

[7]. Krishna, P., Masaru, K., “Reducing the Blocking

in Two-phase Commit Protocol Employing

Backup Sites,” Institute of Industrial Science,

The University of Tokyo. pp. 1-10, 2016.

[8]. Mandeeep, K., Harpreet, K. “Concurrency

Control in Distributed Systems”.International

Journal of Advanced Research in Computer

Science and Software Engineering. Vol.3, Issue

7, pp1443-1446. July.2013.

[9]. Manoj, K. “Commit Protocols in Distributed

Database System,” A Comparison. International

Journal for Innovative Research in Science &

Technology. Vol. 2, Issue 12, pp. 277-281. 2016.

[10]. Monaj,K., Vinah,K., Tiwari, A. ”Security and

Concurrency Control in Distributed Database

Systems,” International Journal of Scientific

Research and Management. Vol2, Issue12, pp

1439-1844. Dec.2014

[11]. Manikandan, V., Ravichandran, R., Suresh, R.,

& Sagayaraj F. “An Efficient Non Blocking Two

Phase Commit Protocol for Distributed

Transactions. International Journal of Modern

Engineering Research. Vol.2, Issue.3, pp.788-

791. 2015.

[12]. Mohit, K., Anjali S., Arjun S., Sachin ,S, “ An

Extension of Modified Three Phase Commit

Protocol for Concurrency Control in

Distributed Systems,” International Journal of

Research Studies in Computer Science and

Engineering. Volume.1, Issue 4, pp. 38-45. Aug.

2014.

[13]. Mohit, R., Manish, L, “A survey on Distributed

Operating Systems,” International Journal of

Innovative Research in Technology. Vol. 1,

Issue 5, pp128-131. 2014

[14]. Paul, K., Charity, W., Newton, K.,

“Concurrency Control in Distributed Systems”

Conference Paper. Pp 1-3. 2014.

[15]. Rakesh, K., Ramnyadevi, R., Vijaya, C.,

“Resolving Atomic Transaction Issues in Web

Services- Business Activities,” International

Journal of Informative Research, Engineering

and Technology. Vol. 3, Issue 3, pp 1680-1683.

Mar. 2014.

[16]. Sonali, B., Paswan,R., “A survey on

Recommender System Using Distributed

Framework,” International Journal of Science

and Research. Vol. 5, Issue 1, pp1967-1970.

2013.

[17]. Song, Jiajia, “Computer Network Performance

Optimization Approaches Based on Distributed

Systems with Cloud Computing Environment,”

International Journal of Science and Research.

Vol. 5, Issue 2, pp 733-735. Feb. 2016.

[18]. Suyash, G., Mohammad S., “EasyCommit: A

Non-blocking Two-phase Commit Protocol,”

Proceedings of the 21st International

Conference on Extending Database

Technology. Pp. 157-168. 2018.

[19]. Tablez, Q, “An efficient Approach for

Concurrency Control in Distributed Systems,”

Indian Streams Research Journal. Vol.3, Issue 9,

pp5-8. Oct. 2013.

Cite this article as : Rebecca Nyasuguta Arika, W.

Cheruiyot, "A Survey on Efficient Concurrency

Control Algorithm in Distributed Database Systems",

International Journal of Scientific Research in

Computer Science, Engineering and Information

Technology (IJSRCSEIT), ISSN : 2456-3307, Volume

5 Issue 2, pp. 1176-1185, March-April 2019. Available

at doi : https://doi.org/10.32628/CSEIT1952228

Journal URL : http://ijsrcseit.com/CSEIT1952228

http://www.ijsrcseit.com/
https://doi.org/10.32628/CSEIT1952228
http://ijsrcseit.com/CSEIT1952228

