
CSEIT411847 | Published - 25 April 2018 | March-April-2018 [(4) 1 : 282-290]

National Conference on Recent Advances in Computer Science and IT (NCRACIT)

International Journal of Scientific Research in Computer Science, Engineering and Information Technology

© 2018 IJSRCSEIT | Volume 4 | Issue 1 | ISSN: 2456-3307

282

Software-Defined Networking: A Survey

Sakshini Hangloo1, Sudesh Kumar2

1M.Tech, Dept. Of computer science, Shri Mata Vaishno Devi University, J&K, India

2PhD scholar, Dept. Of computer science, Shri Mata Vaishno Devi University, J&K, India

sakshini.hangloo@gmail.com1

ABSTRACT

Emerging trends in information technology like cloud computing, mobile computing, big data etc are posing

new challenges to future Internet, as it requires higher accessibility, high bandwidth, and dynamic

management. On the other hand, traditional approaches cannot fully utilize the capability of physical

network infrastructure. Software-defined networking (SDN) is one of the most promising solutions for future

Internet. SDN is characterized by its two distinguished features (1) decoupling the control plane from the

data plane, and (2) providing programmability for network application development. As a result, SDN is

positioned to provide better performance, and higher flexibility to accommodate innovative network designs.

This paper surveys the programmable networks with main focus on SDN. The SDN architecture and the

OpenFlow standard are discussed.

Keywords: Software-defined networking, SDN, network virtualization, OpenFlow, programmable Networks,

data plane, control plane

I. INTRODUCTION

The today’s network is growing very rapidly with

a large number of users, applications, sensors adding

the volume to it but the current technology is

becoming insufficient to cater the huge traffic

generated by them. Existing static networks are ill-

suited for the dynamic needs of today’s and future’s

environment. And hence, there is an increasing need

of new networking infrastructure that will give high

performance, and are energy efficiency and reliable.

Meeting such requirements with the existing

network devices is impossible as their capabilities are

limited. Additionally, to implement network-wide

policies and to support any new service, the network

administrators have to configure thousands of

network devices and protocols making it almost

impossible to apply a consistent set of security, and

other policies. And as an overhead, these devices

have their control and forwarding planes coupled

together and the internals differ from vendor to

vendor.

A lack of open standard limits the ability of network

operators to modify the networks as per requirement

of individual environments. Hence, there is a need

for an architecture that decouples the forwarding

and control planes of the network devices to

dynamically link forwarding and control elements.

II. SDN ARCHITECTURE

Software-Defined Networking (SDN) is a concept

that has the potential to change the networks and

http://ijsrcseit.com/

Volume 4 | Issue 1 | March-April-2018 | www.ijsrcseit.com

 283

the way they are designed, build, and operated. SDN

[3,4] has emerged as the network architecture where

the control plane is decoupled from the forwarding

plane enabling the network control to become

directly programmable[7]. Its concept was initially

proposed by Nicira Networks based on their earlier

development at UCB, Stanford, CMU, Princeton [12].

The present network architecture has many

limitations which can be resolved with the SDN

architecture, such as inability to optimize network

for WAN and Data Centre, to generate more revenue

and reduce expenses[1]. SDN can control and

manage network’s behaviour dynamically through

software via open interfaces. It is different from the

traditional networks in the way that it does not rely

on proprietary defined interfaces.

The OpenFlow architecture typically includes the

following 3 important components [7],[11],[26].

1) Switches: OpenFlow defines an open source

protocol to monitor and change the flow tables in

switches/routers.

An OpenFlow switch has major three components:

the flow tables, communication channels and the

OpenFlow protocols, a) The flow tables consists of an

action field associated with respective flow entry, b)

the communication channel provides a link for the

transmission of commands and packets between

controller and switches, c) the OpenFlow protocol

enables the controller to communicate with any

router or switch.

2) Flow-entries: Each flow-entry includes an action

for that flow item. The OpenFlow switches support

the following actions: (a) sending the packets to the

respective ports, (b) encapsulating the packets and

sending to a controller, and (c) dropping the packets.

3) Controllers: A controller can update, add, or

delete flow entries from the flow table on behalf of

the user’s testing. A static controller is usually a

simple software unit running on a system to

statically establish a path between a group of

network devices during a scientific experiment.

The SDN architecture consists of three major parts:

application, control plane, and data plane (Fig. 1).

The application label uses the decoupled nature of

SDN to achieve specific goals, such as a security

mechanism [9], a network measurement solution [10]

etc. The Applications communicate with a SDN

controller at the control plane via the northbound

interface to enforce their policies in the data plane

without directly interacting with the data plane. The

interface between the control and data plane is

supported by southbound APIs, there the SDN

controller uses these APIs to communicate with the

network devices in the data plane. The control plane

manipulates forwarding devices using the SDN

controller to achieve the specific goal of the target

application. The controller uses the southbound

interface to connect to the data plane. The data plane

handles the actual packets based on the

configurations that are manipulated by the controller.

Figure 1. SDN architecture

 The SDN architecture is:

1) Directly programmable: Network control is

directly programmable because it is decoupled from

forwarding functions. Also, the programs now do not

depend on proprietary software so network managers

manage, control, configure, secure, and optimize

network resources quickly through dynamic SDN

programs.

Volume 4 | Issue 1 | March-April-2018 | www.ijsrcseit.com

 284

2) Agile: The network administrators can

dynamically adjust network-wide traffic flow to

meet the changing needs

3) Managed centrally: The control plane (network

intelligence) is logically centralized in software-

based SDN controllers that maintain a global view of

network. These controllers appear to applications as

a single switch. Consequently, the devices

themselves no longer need to understand and process

thousands of protocol standards but merely accept

instructions from the SDN controllers.

4) Open standards-based vendor-neutral: When

implemented using open standards, SDN simplifies

network design and operation because instructions

are provided by SDN controllers rather than vendor-

specific protocols. A concrete realization of the SDN

approach is OpenFlow (OF) [5,6].

III. OPENFLOW STANDARDS

There are a number of protocol standards that

exist on the use of SDN in real applications. One of

the most popular protocol standards is the OpenFlow

protocol. OpenFlow is a protocol that helps in the

implementation of the SDN concept in both

hardware and software. One of the most important

features of OpenFlow is that researchers can utilize

the existing hardware to design new protocols and

analyze their performance. Now it is becoming part

of commercially available routers and switches as

well.

OpenFlow was proposed by Stanford as a

standard SDN protocol. Regarding testbeds of

OpenFlow, many designs have been proposed for

OpenFlow protocols. They use open source codes to

control the SDN controllers and switches.

OpenVSwitch (OVS) [33] is one of the most popular

software-driven OpenFlow switch. Its kernel is

written in Linux 3.3 and its firmware including Pica8

[34] and Indigo [35] is also available.

OpenFlow is flow-oriented protocol. In SDN,

there is a controller that manages the switches for

traffic control. The controller communicates with the

OpenFlow switch and manages the switch through

the OpenFlow protocol. An OpenFlow switch can

have multiple flow tables, and an OpenFlow channel.

Each flow table contains flow entries and

communicates with the controller. The group table

can configure the flow entries. OpenFlow switches

connect to each other via the OpenFlow ports.

Initially the data flow path of the OpenFlow

switch has an empty routing table with some fields

such as source IP address, destination IP address,

MAC address, QoS type, etc.. This table contains

several packet fields such as an action field which

contains the code for different network operations,

such as packet forwarding, dropping or reception, etc.

This table can be populated based on the incoming

data packets. When a packet from a new flow is

received which has no matching entry in the data

flow table, it is forwarded to the controller to be

processed.

The controller takes the packet handling

decisions, for example, whether a packet is to be

dropped, or a new entry is to be added into the data

flow table on how to deal with this and similar

packets received in the future.

SDN has the capability to program multiple

switches simultaneously; but still suffers from

conventional complexities such as dropping packets,

delaying of the control packets etc. Current platforms

for SDN such as NOX and Beacon enable

programming, but it is still hard to program them in a

low level languages. With OpenFlow protocols

becoming more standard in industry, SDN is

becoming easier to implement. The control plane

generates the routing table and the data plane utilizes

those table to determine where the packets should be

routed [32]. OpenFlow and SDN allow data centers

and researchers to easily abstract and manage the

large and complex networks.

Volume 4 | Issue 1 | March-April-2018 | www.ijsrcseit.com

 285

IV. FUNDAMENTAL CHARACTERISTICS OF

SDN

Software Defined Networking is characterized by five

fundamental traits: plane separation, a simplified

device, centralized control, openness, and network

virtualization [21]

A. Plane Separation

The very key characteristic of SDN is the decoupling

of the forwarding plane and the control plane. The

Forwarding plane contains the forwarding tables and

the logic for dealing with incoming packets based on

MAC address and IP address.

The forwarding plane manages the arriving packets

by forwarding, dropping, consuming or replicating it.

For forwarding, the device determines the correct

output port by looking up in the address table. A

packet may also be dropped due to buffer overflow.

Some packets that require processing by the control

plane are consumed and passed to the appropriate

plane. Finally, in the case of multicasting the

incoming packet must be replicated before dispensing

the copies from various output ports. The main logic

that is used to control the forwarding plane resides in

the control plane.

The control plane determines how the forwarding

tables in the data plane be configured. In a traditional

network each device has its own control plane who’s

primary task of is to run routing protocols so that all

the distributed forwarding tables on the devices

throughout the network stay synchronized. This

synchronization is needed to prevent loops. In SDN,

the control planes of all the switching devices are

moved onto a centralized controller.

B. Simplified Device and Centralized Controller

Keeping in mind the idea of separation of forwarding

and control planes, the other characteristic is the

simplification of devices. Here in SDN, instead of

running thousand lines of code of complicated

control plane software, that software is removed from

the device and placed in a centralized controller. The

device is allowed to behave autonomously by a

centralized system on which management and

control software run.

The controller provides the instructions to these

simplified devices, when needed, in order to allow

them make faster decisions about how to deal with

the arriving packets.

C. Openness

A basic characteristic of Open SDN is that its

interface should remain well documented, standard,

and not proprietary. Individuals can take advantage

of this capability in order to test new ideas, resulting

in better and faster technological advancement in the

functioning of networks.

By exploiting the power of the open source

development community should greatly accelerate

innovation in SDN.

In addition to facilitating experimentation and

research, open interfaces permit devices from

different vendors to interoperate. This produces a

competitive environment and therefore reduces the

cost of network equipment for the consumers.

D. Network Virtualization

The idea of virtualization is to create a higher-level

abstraction that runs on top of the actual physical

instance being abstracted. With the help of network

virtualization, the network administrator is able to

create, expand and contract a network anytime and

anywhere as per the requirements [21]. Network

Virtualization enables coexistence of multiple

network instances on a shared physical infrastructure,

thus, NV can be used to run an SDN solution. Also,

Network virtualization in SDN is a good way to

provide different users with infrastructure sharing

capabilities because as the network grows so are the

needs of the users [11][25].

V. ADVANTAGES OF SDN

Major advantages of SDNs include [11],[13]–[17],

[18]–[20].

Volume 4 | Issue 1 | March-April-2018 | www.ijsrcseit.com

 286

1) Intelligence with Speed

SDN is intelligent enough to efficiently distribute the

workload via powerful control plane resulting in high

speed transmissions and making more efficient use of

the resources.

2) Network Management Made Easy

The administrators have a centralized control over

the network and can change the network

characteristics as per the demand of environment.

This enables administrators to modify the network

configurations with ease.

3) Multi-Tenancy

The concept of the SDN can be expanded across

multiple partitions of the networks such as the data

centres and data clouds where there is a need to

deploy their applications in virtual machines (VMs)

across several sites. Existing architectures do not

support joint intra-tenant or inter-tenant network

control ability but SDN can support cross-tenant data

centre optimization.

4) Virtual Application Networks

Virtual application networks make use the

virtualization of network resources to hide the low-

level physical details from the user applications and

allow the users to reconfigure the network tasks

easily.

VI. CHALLENGES

These challenges continue to be relevant today in

SDN. We list a few of them here [21]:

1) Latency

In SDN we have a centralized controller and the

networking element requests policy directions from

it, resulting in number of decisions that will suffer

significantly in round-trip latency. The way and the

extent this latency affects the operation of the

network is undetermined. Furthermore, it is also not

known whether the traditional servers on which the

controller runs will be able to service these requests

at sufficient speed so as to have minimal or no impact

on network operation.

2) Security

Having a centralized controller means that the

attacker has to focus on that one point of failure, and

hence can lead to the modification rules/policies in

the network devices, unauthorized access to the

network, data leakage and deny a legitimate user to

access the available resources (DoS) [22].

Therefore, it is important to consider some extra steps

to protect both the centralized controller and the

communication channels between the controller and

the network devices.

3) Scale

Having a centralized controller means that

responsibility for the topological organization of the

network, determination of optimal paths, and the

controller must handle device reconfiguration. But as

more and more network devices are added to the

network, a question of the ability of a single

controller to handle all those devices arises.

 It is difficult to know the solution when the number

of network devices outgrows the capacity of the

controller to handle them. If we attempt to scale the

network by adding more controllers, how will they

communicate, and who will control the coordination

among the controllers?

4) High availability (HA)

The centralized controller is a single point of failure

for the network, and if this fails the whole network

will stop working. Obviously, this is not a preferable

scenario so there is a need for redundancy schemes in

various areas.

Firstly, there must be redundant controllers such that

processing power is still available even in the event of

failure of a single controller.

Also, the actual data needed by the set of controllers

should be mirrored such that the controllers can

manage the devices in a consistent way.

Volume 4 | Issue 1 | March-April-2018 | www.ijsrcseit.com

 287

Furthermore, the communications links to the

various controllers need to be redundant so as to

ensure that there is always a working

communications link between a switch and at least

one controller.

VII. EVOLUTION OF SDN ARCHITECTURE

SDN supports both centralized and distributed

controller models. Both the models have different

infrastructure elements and requirements to

consider. This section describes the SDN models

along with their advantages and disadvantages. Also,

the hybrid SDN model is described which combines

the benefits of both the approaches.

A. The Centralized SDN Model

In centralized SDN architecture a single centralized

controller manages and supervises the entire

network. The network intelligence is centralized

inside a single decision point. Since a single

centralized controller is used to program the entire

network, so it must have a global view of the loads

on each switch across the routing path. Also, it must

keep a track of which flow inside which router is

presenting a bottleneck on which link.

The controller communicates with OpenFlow

switches to collect network statistics from the

network devices, and sends this data to the

management plane. The management plane is

software that consists of a database module and

analytic algorithms that detects the switch overloads

and predicts the future loads that may occur in the

network.

Although the centralized control plane has an

advantage of a single point of management and

better control over the network, it incurs several

limitations, (a) the controller needs to update

OpenFlow switches more frequently than traditional

ones. Thus, the topology discovery produces higher

overloads because all ports must be scanned

linearly. This increases the response time and may

impose a higher overload for large-scale networks,

(b) in the centralized model, the initial packet of

every new flow in the system must first be

forwarded to the controller for inspection. The

controller determines the future path for the flow

hop-by-hop. Thus, when a new flow is to be

programmed, the controller needs to contact all the

switches in the path, which is a scalability challenge

for large networks, (c) The centralized controller

represents a single point of failure which makes the

network highly vulnerable to intrusions and attacks,

(d) SDN networks are becoming more complex since

they are designed to support different

communication services and provide diverse

functionalities such as intrusion detection, firewall,

network virtualization, and load balancing. These

services need to coordinate their activities in the

control plane to achieve complicated control

objectives and maintain a global view of the entire

network. However, it is hard to fully coordinate the

control actions and keep the consistency of network

states among distributed functions.

B. The Distributed Sdn Model

The distributed SDN model focuses on eliminating

the single point of failure and enabling scale up by

sharing the load among distributed controllers.

Distributed SDN control planes are designed to be

more responsive to handle local network events in

data centers. In particular, for multi-domain SDNs

with a large variety of network technologies, the

distributed SDN model is easily able to adapt to the

network requirements. Additionally, a distributed

controller is more responsive and can react faster

and efficiently while handling global events.

Authors in [27] introduces two-layers of hierarchical

distributed controllers: (i) bottom-layer consists of a

group of locally non-connected distributed

controllers each managing one or more switches

without any global knowledge of the network, and

(ii) the top-layer consists of a logically centralized

root controller that manages the network-wide

state. In addition, a cluster-based distributed model

is proposed by authors in [28] where a master

controller is selected based on the load in the

network so that if the load increases, the master

node can be switched to a less loaded one. Also,

authors in [29] introduce a SDN Controller Cluster

(SCC) that is composed of multiple controller

instances interconnected over East–West interfaces.

Further, in [30] the authors describe a controller

Volume 4 | Issue 1 | March-April-2018 | www.ijsrcseit.com

 288

placement problem to decide the optimal number of

controllers needed and their placement in the SDN

network.

There are several key challenges faced by this

architecture that must be addressed in the future

SDN to improve scalability and robustness of

networks.

(a) The above approaches require a consistent

global view in all controllers. The mapping between

control planes and forwarding planes must be

programmed instead of the present static

configuration, which can result in uneven

distribution of load among the controllers.

(b) Finding an optimal number of distributed

controllers that ensure linear scale up of the SDN

network is hard.

(c) Such approaches mostly make use of local

algorithms to develop coordination protocols in

which each controller needs to respond only when

an events take place in its local neighbourhood.

Thus, there is a need to synchronize the local and the

distributed events to provide a global view of the

network.

C. The hybrid SDN control Architecture [2]

To tackle the limitations in each of the approaches

described above, hybrid SDN architectures are being

taken into account. However, a critical challenge

arises when determining how much of network

abstraction modules can be centralized and

efficiently designed to support logically centralized

control tasks, and at the same time provide

physically distributed protocols. Consequently, to

take the advantages of both the centralized and the

distributed architectures, a hybrid control plane is

required to achieve such coordination.

The hybrid SDN model is influenced from by the

benefits of the simple control of managing specific

data flows as in the centralized model with the

scalability and flexibility of the distributed model. It

requires various components to coordinate the

communication between SDN controllers. The

network administrators will require standard

interfaces, and policies to manipulate and interact

with the control planes in distributed environments

[31]. The hybrid SDN model may be useful in

providing answers to (a) what state belongs in

distributed protocols, (b) what state must be local to

the switches, and (c) what state should be

centralized. It can boost the network performance

by facilitating efficient resource utilization because it

will be easier to program each aspect of the network

at the application level.

Furthermore, the hybrid SDN model could provide

management policies to solve security issues, enable

network Optimization, and state synchronization in

the case of control plane overload. Also, hybrid SDN

model allows up gradation of the existing

infrastructure without the need to change the

overall system.

VIII. CONCLUSION

Software Defined Networks as a rising technology is

bring modernization into the networking with

decoupling of control plane and the data plane, and

removing proprietary in the network architecture to

open and programmable network. SDN is becoming

increasingly popular due to the interesting features it

presents that unlock innovation in how we design

and organize networks. Due to various advantage of

this architecture, many enterprises are shifting from

the traditional network architecture to new SDN

architecture. But still, there are some important

challenges that need to be solved before realizing

successful SDN with security being one of the main

issues that threatens the future of SDN technology.

IX. REFERENCES

[1] Machine Learning Based Intrusion Detection System

for Software Defined Networks

[2] Software-Defined Networking: Challenges and

research opportunities for Future Internet

[3] N. McKeown, Software-defined networking,

INFOCOM keynote talk, April 2009, Rio de Janeiro,

Brazil.

[4] H. Kim, N. Feamster, Improving network

management with software defined networking,

Communications Magazine, vol. 51 (2), IEEE, 2013,

pp. 114–119.

Volume 4 | Issue 1 | March-April-2018 | www.ijsrcseit.com

 289

[5] N. McKeown, T. Anderson, H. Balakrishnan, G.

Parulkar, L. Peterson, J. Rexford, Openflow: enabling

innovation in campus networks, ACM SIGCOMM

Comput. Commun. Rev. (2008) 69–74.

[6] ONF, The openflow 1.3.1 specification, Tech. rep.

September 6, 2012.

[7] https://www.opennetworking.org

[8] Software-Defined Networking: A survey Hamid

Farhady, HyunYong Lee ⇑, Akihiro Nakao

[9] S. Shin, P. Porras, V. Yegneswaran, M. Fong, G. Gu,

M. Tyson, Fresco: modular composable security

services for software-defined networks, in:

Proceedings of Network and Distributed Security

Symposium, 2013.

[10] M. Yu, L. Jose, R. Miao, Software defined traffic

measurement with opensketch, in: USENIX NSDI,

vol. 13, 2013.

[11] A Survey on Software-Defined Network and

OpenFlow: From Concept to Implementation

[12] S. Ortiz, ―Software-defined networking: On the verge

of a breakthrough?‖ Computer, vol. 46, no. 7, pp. 10–

12, Jul. 2013.

[13] C. S. Li and W. Liao, ―Software defined networks,‖

IEEE Comm. Mag., vol. 51, no. 2, p. 113, Feb. 2013.

[14] M. Casado, T. Koponen, S. Shenker, and A.

Tootoonchian, ―Fabric: A retrospective on evolving

SDN,‖ in Proc. Workshop Hot Topics Softw. Defined

Netw., Aug. 2012, pp. 85–90.

[15] Y. Kanaumi, S. Saito, and E. Kawai, ―Toward large-

scale programmable networks: Lessons learned

through the operation and management of a wide-

area OpenFlow-based network,‖ in Proc. Int. Conf.

Netw. Serv. Manage., Oct. 2010, pp. 330–333.

[16] H. Fei, Network Innovation Through OpenFlow and

SDN: Principles and Design. New York, NY, USA:

Taylor & Francis, 2014.

[17] B. Lantz, B. Heller, and N. McKeown, ―A network in a

laptop: Rapid prototyping for software-defined

networks,‖ in Proc. ACM SIGCOMM Workshop Hot

Topics Netw., New York, NY, USA, 2010, pp. 19:1–

19:6.

[18] T. D. Nadeau and P. Pan, ―Software driven networks

problem statement,‖ IETF Internet-Draft (Work-in-

Progress), Oct. 2011, draft-nadeau-sdnproblem-

statement-01.

[19] M. Yu, J. Rexford, M. Freedman, and J. Wang,

―Scalable flow-based networking with DIFANE,‖

Proc. ACM SIGCOMM Comput. Commun. Review,

vol. 40, no. 4, pp. 351–362, Oct. 2010.

[20] K. Yap et al., ―OpenRoads: Empowering research in

mobile networks,‖ ACMSIGCOMM Comput.

Commun. Review, vol. 40, no. 1, pp. 125–126, Jan.

2010.

[21] Software Defined Networks A Comprehensive

Approach

[22] S. Sezer, S. Scott-Hayward, P. K. Chouhan, B. Fraser,

D. Lake, J. Finnegan, et al., "Are we ready for SDN?

Implementation challenges for software-defined

networks," Communications Magazine, IEEE, vol. 51,

pp. 36-43, 2013.

[23] K. Benton, L. J. Camp, and C. Small, "OpenFlow

vulnerability assessment," presented at the

Proceedings of the second ACM SIGCOMM

workshop on Hot topics in software defined

networking, Hong Kong, China, 2013.

[24] N. Chowdhury, R. Boutaba, A survey of network

virtualization, in: Elsevier Computer Networks, 2010.

[25] D. Drutskoy, ―Software-Defined Network

Virtualization,‖ M.S. thesis, Princeton University,

Princeton, NJ, USA, 2012. OpenFlow. [Online].

Available: http://www.openflow.org/

[26] H.Y. Soheil, G. Yashar, Kandoo: a framework for

efficient and scalable offloading of control

applications, 2012, pp. 19–24.

[27] M.O.S. Volkan Yazici, A.O. Ercan, Controlling a

software-defined network via distributed controllers,

in: 2012 NEM Summit Proceedings.

[28] Z. Cao, Z. Li, Analysis of sdn controller cluster in

large-scale production networks, Tech. rep. 00, 2013.

[29] B. Heller, R. Sherwood, N. McKeown, The controller

placement problem, in: Proceedings of the First

Workshop on Hot Topics in Software Defined

Networks, HotSDN ’12, 2012

[30] T. Nadeau, P. Pan, Framework for software defined

networks, Internet-Draft draft-nadeau-sdn-

framework-01, Internet-Draft, October 2011.

[31] K. Bakshi, ―Considerations for software defined

networking (SDN): Approaches and use cases,‖ in

Proc. IEEE Aerosp. Conf., Mar. 2013, pp. 1–9.

[32] OpenVSwitch. [Online]. Available:

http://openvswitch.org/development/openflow-1-x-

plan

[33] Pica8 Open Network Fabric. [Online]. Available:

http://www.pica8.org/solutions/openflow.php

http://openvswitch.org/development/openflow-1-x-plan
http://openvswitch.org/development/openflow-1-x-plan

Volume 4 | Issue 1 | March-April-2018 | www.ijsrcseit.com

 290

[34] Indigo—Open Source OpenFlow Switches. [Online].

Available:

http://www.openflowhub.org/display/Indigo/

