2D Graphical Optimization for Molecular Effect Model in High Temperature Superconductors Thallium Class [ TC < 0° , TC > 0° ] with Electronics Physics Multifunctional Transmission Line Design

Authors

  • Francisco Casesnoves  PhD Engineering, MSc Physics-Mathematics, Physician. Independent Research Scientist. International Association of Advanced Materials, Sweden. Uniscience Global Scientific Member, Wyoming, USA. Estonia

DOI:

https://doi.org//10.32628/CSEIT229541

Keywords:

Interior Optimization (IO) Methods, Graphical Optimization, Systems of Nonlinear Equations, Tikhonov Regularization (TR), Critical temperature [ Tc ], Inverse Least Squares (ILS), Electronics Superconductors (SC), High-Temperature Superconductors (HTSC), BCS Theory, [ Tl- Sn-Pb-Ba-Si-Mn-Mg-Cu-O ] Molecular HTSC Group, Molecular Mass (MO), Molecular Effect Model (MEM), Superconducting Multifunctional Transmission Line (SCMTL).

Abstract

Following High Temperature Superconductors (HTCSs) study series, Inverse Least Squares (ILS) 2D Numerical/Graphical Optimization is applied on Molecular Effect Model (MEM). Selected HTSCs class is Thallium group of [ Tl- Sn-Pb-Ba-Si-Mn-Mg-Cu-O ], constrained to  [TC ? 0°  ,  TC > 0° ]. Tetragonal Lattice and Amorphous compounds of this Type II Thallium HTSCs are not included at this research stage. Solutions with Matlab 2D Graphical Optimization techniques to validate primarily the MEM sinusoid-shape analytical geometry are presented. Programming-methods and imaging processing comparisons with GNU-Octave and Freemat software are also shown. Results comprise 2D Tikhonov Regularization algorithms with mathematical methods for this class. Findings obtain acceptable Numerical and 2D Graphical Optimization outcomes with low error-residuals. Results show two parts, the 2D Graphical Optimization MEM modelling, and MEM comparative imaging processing systems with examples and analysis of several numerical equations and predictions. Applications of MEM for the overview of the Multifunctional Transmission Line for SCs and HTSCs are included. Electronics Physics usages for Superconducting Multifunctional Transmission Lines, Superconductors in general, and HTSCs are presented.

References

  1. Casesnoves, F. "Mathematical-Computational Optimization Methods on Primary Molecular Effect Model for Selected High Temperature Superconductors with Electronics Physics Applications". International Journal of Scientific Research in Computer Science, Engineering and Information Technology (IJSRCSEIT). ISSN : 2456-3307, Volume 8 Issue 2, pp. 159-167, March-April 2022. DOI: https://doi.org/10.32628/CSEIT228220].
  2. Aditya M. Vora. Modified Transition Temperature Equation for Superconductors. Chin.Phys.Lett. Vol. 25, No. 6 (2008) 2162.
  3. Abramobitz, Stegun. Handbook of Mathematical Functions. Applied Mathematics Series. 55.1972.
  4. Casesnoves , F "Interior Optimization Methods with Electronics Applications", International Journal of Scientific Research in Science, Engineering and Technology (IJSRSET), Online ISSN : 2394-4099, Print ISSN : 2395-1990, Volume 7 Issue 3, pp. 428-436, May-June 2020.
  5. Casesnoves, F. "Advanced Interior Optimization Methods with Electronics Applications", International Journal of Scientific Research in Science, Engineering and Technology (IJSRSET), Online ISSN : 2394-4099, Print ISSN : 2395-1990, Volume 7 Issue 5, pp. 97-110, September-October 2020. DOI : 10.32628/IJSRSET207518 ].
  6. Casesnoves, F. "Multiobjective Interior Optimization Computational Methods for Electronics BCS Superconductivity", International Journal of Scientific Research in Computer Science, Engineering and Information Technology (IJSRCSEIT), ISSN : 2456-3307, Volume 6 Issue 5, pp. 280-293, September-October 2020. DOI : 10.32628/CSEIT206556 ].
  7. Casesnoves, F. Mathematical Models and Optimization of Erosion and Corrosion. Ph.D. Thesis, Taltech University, Tallinn, Estonia. 14 December. 2018. ISSN 25856898.
  8. Casesnoves, F. Die Numerische Reuleaux-Methode Rechnerische und Dynamische Grundlagen mit Anwendungen (Erster Teil); Sciencia Scripts: 2019; ISBN-13: 978-620-0-89560-8, ISBN-10: 6200895600 ].
  9. Casesnoves, F. Primary Modelling for Electromagnetic Waves Transmission in Extreme Weather Conditions. Inter-national Journal of Innovative Research in Science, Engineering, and Technology. Volume 7, Issue 10, 2018. ISSN Online: 2319-8753. DOI: 10.15680/IJIRSET.2018.0710022 ].
  10. Casesnoves, F. The Numerical Reuleaux Method, a computational and dynamical base with applications. First Part. Lambert Academic Publishing. ISBN-10 3659917478. 2019.
  11. Darwin, C. The origin of species. Barnes & Noble Classics. 2004.
  12. Haupt, R, Haupt, S. Practical Genetic Algorithms. Wiley. Second Edition. 2004.
  13. Kazufumi, I; Bangti, J. Inverse Problems, Tikhonov Theory and Algorithms. Series on Applied Mathematics Volume 22. World Scientific. 2015.
  14. Plakida, N. High-Temperature Cuprate Superconductors Experiment, Theory, and Applications. Springer Series in Solid-State Sciences ISSN 0171-1873. 2010.
  15. Alexandrev, A S. Theory of Superconductivity, From Weak to Strong Coupling. Series in Condensed Matter Physics. Institute of Physics Publishing Philadelphia. 2003.
  16. Khare, N. Handbook of High-Temperature Superconductor. Marcel Dekker USA. ISBN: 0-8247-0823-7. 2003.
  17. Casesnoves F, Suzenkov A. Mathematical Models in Biotribology with 2D-3D Erosion Integral-Differential Model and Computational-Optimization/Simulation Programming. International Journal of Scientific Research in Computer Science, Engineering and Information Technology. 2017 IJSRCSEIT | Volume 2 | Issue 3 | ISSN : 2456-3307.
  18. Casesnoves F, Antonov M, Kulu P. Mathematical models for erosion and corrosion in power plants. A review of applicable modelling optimization techniques. IEEE Xplore database and will be cross referred in SCOPUS. Proceedings of RUTCON2016 Power Engineering Conference.2016. Riga Technical University.
  19. Casesnoves, F. 2D computational-numerical hardness comparison between Fe-based hardfacings with WC-Co reinforcements for Integral-Differential modelling. Key Engineering Materials Journal. Trans Tech publications 2018. Vol 762, pp 330-338. DOI: 10.4028/www.scientific.net/KEM.762.330.ISSN: 1662-9795. 2018.
  20. Casesnoves F, Surzhenkov A. Inverse methods for computational simulations and optimization of erosion models in power plants. IEEE Proceedings of RUTCON2017 Power Engineering Conference. Riga Technical University. IEEExplore Publication in 5th December 2017. DOI:10.1109/RTUCON.2017.8125630. Electronic ISBN: 978-1-5386-3846-0. USB ISBN: 978-1-5386-3844-6.Print on Demand (PoD) ISBN: 978-1-5386-3847-7.
  21. Casesnoves, F. 'Computational Simulations of Vertebral Body for Optimal Instrumentation Design'. ASME Journal of Medical Devices (Research Paper). Author: F Casesnoves .Journal of Medical Devices. June 2012. Volume 6. Issue 2/021014.11 pages.http://dx.doi.org/10.1115/1.4006670.
  22. Casesnoves,F. 'Large-Scale Matlab Optimization Toolbox (MOT) Computing Methods in Radiotherapy Inverse Treatment Planning’. High Performance Computing Meeting. Nottingham University. January 2007.
  23. Casesnoves, F. ‘A Monte-Carlo Optimization method for the movement analysis of pseudo-rigid bodies’. 10th SIAM Conference in Geometric Design and Computing, Texas, San Antonio, USA. Contributed Talk. November 2007.
  24. Casesnoves, F. 'Applied Inverse Methods for Deformable Solid Dynamics/Kinematics in Numerical Reuleaux Method (NRM)'. International Journal of Numerical Methods and Applications. volume 9(2) 2013 .pages 109-131. peer-reviewed International Mathematical/Computation Journal Article. print/Online.http://www.pphmj.com/abstract/7688.htm. This article is specially innovative in Inverse Problems applications for deformable solids kinematics/dynamics, further publications are included in United States Congress Library and Numerical Reuleaux Method is accepted by scientific community as an innovative dynamics method in deformable solids with mechanical, biomechanical and aerospace applications. New applications of this method will be probably found significantly in future.
  25. Casesnoves, F. Nonlinear comparative optimization for biomaterials wear in artificial implants technology. Pre-sented in Applied Chemistry and Materials Science RTU2018 Conference Proceedings. 2018.
  26. Huang X. Does the isotope effect of mercury support the BCS theory?. Condensed Matter. 2011.
  27. Hummel, R E. Electronic Properties of Materials.
  28. Kasap F, P. Capper (Eds.), Springer Handbook of Electronic and Photonic Materials, DOI 10.1007/978-3-319-48933-9_50ourth Edition. Springer. 2000.
  29. Kessel W.On a General Formula for the Transition Temperature of Superconductors. Naturforsch. 29 a, 445 — 451. 1974.
  30. Kulou P, Casesnoves F, Simson T, Tarbe R. Prediction of abrasive impact wear of composite hardfacings. Solid State Phenomena, Proceedings of 26th International Baltic Conference on Materials Engineering. 2017. Solid State Phenomena Submitted: 2017-06-12. ISSN: 1662-9779, Vol. 267, pp 201-206. DOI:10.4028/www.scientific.net/SSP.267.201 2017 Trans Tech Publications, Switzerland Online: 2017-10-10.
  31. Luenberger, G D. Linear and Nonlinear Programming. Fourth Edition. Springer. 2008.
  32. Moysés Luiz, Adir. Superconductivity – Theory and Applications, Edited by ISBN 978-953-307-151-0. 2010.
  33. Reynolds C A, Serin, Nesbitt. The Isotope Effect in Superconductivity. I. Mercury. The Isotope Eff'ect in Superconductivity'. Mercury. Physical review volume 84, Number 4, November. 1951.
  34. Seri B., C. A. Reynolds, and B. Nesbitt. Mass Dependence of the Superconducting Transition Temperature of Mercury. Letters to Editor. Phys. Rev 80-761. Page 761. 1950.
  35. Todinov, M. Reliability and Risk Models. Wiley. 2005.
  36. Vidyasagar M. Nonlinear Systems Analysis. Second Edition. Prentice Hall.1993.
  37. Wesche, R. Chapter 50. High-Temperature Superconductors. Springer Handbook of Electronic and Photonic Materials. 2017.
  38. ‘European Textbook on Ethics in Research’. European Commission, Directorate-General for Research. Unit L3. Governance and Ethics. European Research Area. Science and Society. EUR 24452 EN.
  39. The European Code of Conduct for Research Integrity. Revised Edition. ALLEA. 2017.
  40. Good Research Practice. Swedish Research Council. ISBN 978-91-7307-354-7. 2017.
  41. Ethics for Researchers. EU Commission. Directorate-General for Research and Innovation. Science in society /Capacities FP7. 2013.
  42. Casesnoves, F. Mathematical 3D Graphical Optimization and Approximation Methods for Primary Molecular Effect Model in High Temperature Superconductors Sn-Sb-Te-Ba-Mn-Cu-OGroup. International Journal of Advanced Multidisciplinary Research and Studies. Int. j. adv. multidisc. res. stud. 2022; 2(3):168-172 . ISSN: 2583-049X .
  43. Casesnoves, F. Mathematical Optimization and Approximation Methods for Primary Molecular Effect Model in High Temperature Superconductors Tl Group TC > 0° . International Journal of Engineering, Science, Technology and Innovation (IJESTI) . E-ISSN: 2582-9734 . Vol 2, Issue 4, April 2022 .
  44. Casesnoves, F. Mathematical 3D Optimization GNU-Octave with Review of 2D/3D Critical Temperature Optimization Molecular Effect Model in High Temperature Superconductors Thallium Class TC > 0°and Superconducting Multifunctional Transmission Line Invent. International Journal of Mathematics and Computer Research . ISSN: 2320-7167. Volume 10 Issue 06 June 2022, Page no. – 2750-2759. DOI: 10.47191/ijmcr/v10i6.08 .
  45. Casesnoves, F. Optimization of Critical Temperature Molecular Effect Model Predictions Series with 2D Graphical Statistics for High Temperature Superconductors Thallium Class TC ˂ 0°, TC > 0°. International Journal of Advanced Multidisciplinary Research and Studies. 2022; 2(3):580-586 . ISSN: 2583-049X .
  46. Wang, Y. F. Fundamental elements of applied superconductivity in electrical engineering. Wiley. 2013.
  47. Seidel, P. Applied superconductivity. Volume 1 and 2. Wiley-VCH. 2015.
  48. Buschow, K. Magnetic & superconducting materials. Second edition. Elsevier. 2003.

Downloads

Published

2022-06-30

Issue

Section

Research Articles

How to Cite

[1]
Francisco Casesnoves, " 2D Graphical Optimization for Molecular Effect Model in High Temperature Superconductors Thallium Class [ TC < 0° , TC > 0° ] with Electronics Physics Multifunctional Transmission Line Design, IInternational Journal of Scientific Research in Computer Science, Engineering and Information Technology(IJSRCSEIT), ISSN : 2456-3307, Volume 8, Issue 3, pp.477-488, May-June-2022. Available at doi : https://doi.org/10.32628/CSEIT229541