Twitter Sentiment Analysis

Authors

  • Gunjan R. Patil  Department of Computer Science Engineering, Amity University, Raipur, Chhattisgarh, India
  • Rishiraj Shrivastava  Department of Computer Science Engineering, Amity University, Raipur, Chhattisgarh, India
  • Advin Manhar  Assistant Professor, Department of Computer Science Engineering, Amity University, Raipur, Chhattisgarh, India

DOI:

https://doi.org/10.32628/CSEIT23903117

Keywords:

Twitter, Sentiment, Analysis, Opinion Mining, Social Media, Natural Language Processing

Abstract

Social media has entered further attention currently. Public and private opinions about a wide variety of subjects are expressed and spread continually via multitudinous social media. Twitter is one of the social media that's gaining trend. Twitter offers associations a fast and effective way to dissect guests ' perspectives toward the critical success in the request place. Developing a program for sentiment analysis is an approach to be used to computationally measure guests’ comprehension. This paper reports on the design of the sentiment analysis, rooting a vast quantum of tweets. Prototyping is used in this development. Results classify guests' perspectives via tweets into positive and negative, which is represented in a Graph. Still, the program has been planned to develop on a web operation system, but due to the limitation of Django which can be worked on a Linux Garcon or Beacon, further this approach needs to be done.

References

  1. Rambocas, and J. Gama, 'Marketing Research:The Role of Sentiment Analysis'. The 5th SNA-KDD Workshop’11. U nivers ityof Porto, 2013
  2. A. K. Jose, N. Bhatia, and S. Krishna, 'TwitterSentimentAnalysis'. NationalInstituteof TechnologyCalicut, 2010.
  3. P.Lai,'ExtractingStrongSentimentTrendfromTwitter'. Stanford University, 2012.
  4. Y. Zhou, and Y. Fan, ' A Sociolinguistic Study of American Slang,' Theory and Practice in Language Studies, 3(12), 2209–2213, 2013. doi:10.4304/tpls.3.12.2209-2213
  5. M. Comesaña, A. P.Soares, M.Perea, A.P. Piñeiro, I. Fraga, and A. Pinheiro, ' Author ’ s personal copy Computers in Human Behavior ERP correlates of masked affective priming with emoticons,' Computers in Human Behavior, 29, 588–595, 2013.
  6. A.H.Huang, D.C. Yen, & X. Zhang, 'Exploring the effects of emoticons,' Information & Management, 45(7), 466–473, 2008.
  7. D. Boyd, S. Golder, & G. Lotan, 'Tweet, tweet, retweet: Conversational aspects of retweeting on twitter,' System Sciences (HICSS), 2010. Retrieved from http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5428313
  8. T. Carpenter, and T. Way, 'Tracking Sentiment Analysis through Twitter,'. ACM computer survey. Villanova:VillanovaUniversity, 2010.
  9. D. Osimo, and F. Mureddu, 'Research Challenge on Opinion Mining and Sentiment Analysis,' Proceeding of the 12th conference of Fruct association, 2010, United Kingdom.
  10. A. Pak,and P. Paroubek, 'Twitter as a Corpus for Sentiment Analysis and Opinion Mining,' Special Issue of International Journal of Computer Application, France:Universite de Paris-Sud, 2010.
  11. S.Lohmann, M. Burch, H. Schmauder and D. Weiskopf, 'Visual Analysis of Microblog Content Using Time-Varying Co-occurrence Highlighting in Tag Clouds,' Annual conference of VISVISUS. Germany: University of Stuttgart, 2012.
  12. H. Saif, Y.He, and H. Alani, 'SemanticSentimentAnalysisof Twitter,' Proceeding of the Workshop on Information Extraction and Entity Analytics on Social Media Data. United Kingdom: Knowledge Media Institute, 2011.
  13. A. Agarwal, B. Xie, I. Vovsha, O. Rambow, and R.Passonneau, 'Sentiment Analysis of Twitter Data,' Annual International Conferences. New York:Columbia University, 2012.
  14. J. Zhang, Y. Qu, J. Cody and Y. Wu, ' A case study of Microblogging in the Enterprise: Use, Value, and Related Issues,' Proceeding of the workshop on Web 2.0., 2010.G. Kalia, 'A Research Paper on Social Madia: An Innovative Educational Too', Vol.1, pp. 43-50, Chitkara University, 2013.
  15. Internet World Start, 'Usage and Population Statistic', Retrieved 10 15, 2013 from: http://www.internetworldstats.com/stats.htm
  16. A.M. Kaplan, and M, Haenlein, 'Users of the world, unite! The challenges and opportunities of Social Media,' France: Paris, 2010.
  17. Q. Tang, B. Gu, and A.B. Whinston, 'Content Contribution in Social Media: The case of YouTube', 2nd conference of social media. Hawaii: Maui, 2012.
  18. M.Taboada, J. Brooke, M. Tofiloski, K. Voll, and M. Stede, ' Lexicon- Based Methods for Sentiment Analysis,' Association for Computational Linguistics, 2011.
  19. M. Annett, and G. Kondrak, 'A Comparison of Sentiment Analysis Techniques: Polarizing Movie Blogs,' Conference on web search and web data mining (WSDM). University of Alberia: Department of Computing Science, 2009.
  20. P. Goncalves, F. Benevenuto, M. Araujo and M. Cha, 'Comparing and Combining Sentiment Analysis Methods', 2013.
  21. E. Kouloumpis, T. Wilson, and J. Moore, 'Twitter Sentiment Analysis:The Good the Bad and theOMG!', (Vol.5). International AAAI, 2011.
  22. S. Sharma, 'Application of Support Vector Machines for Damage detection in Structure,' Journal of Machine Learning Research, 2008.
  23. A.Sharma, and S. Dey, 'Performance Investigation of Feature Selection Methods and Sentiment Lexicons for Sentiment Analysis,' Association for the advancement of Artificial Intelligence, 2012.
  24. J. Spencer and G. Uchyigit, 'Sentiment or: Sentiment Analysis of Twitter Data,' Second Joint Conference on Lexicon and Computational Semantics. Brighton:University of Brighton, 2008.
  25. A. Blom and S. Thorsen, 'Automatic Twitter replies with Python,'International conference 'Dialog 2012'.
  26. B. Pang, and L. Lee, 'Opinion mining and sentiment analysis,' 2nd workshop on making sense of Microposts. Ithaca: Cornell University. Vol.2(1), 2008.
  27. M. Hu, and B. Liu, 'Mining and summarizing customer reviews,' 2004.
  28. P. Nakov, Z. Kozareva, A. Ritter, S. Rosenthal, V. Stoyanov, T. Wilson, Sem Eval-2013 Task2:Sentiment AnalysisinTwitter (Vol.2,pp. 312-320 ,2013.
  29. J. Wu, J., Wang, & L. Liu, 'Kernel-Based Method for Automated Walking Patterns Recognition Using Klnematics Data'. 5th Workshop on Natural Language Processing. China: Xi’an Jiaotong University. 2006.
  30. T. D. Smedt, and W. Daelemans, 'Pattern for Python,' Proceeding of COLING. Belgium: University of Antwerp, 2012.
  31. A. Sweigart, 'Invent your own computer games with Python. 2nd edition, 2012. Retrieved from http://inventwithpython.com/
  32. C. Seberino, 'Python. Faster and easier software development,' Annual Conference. California: San Diego, 2012.
  33. A.Lukaszewski, 'MySQL for Python. Integrate the flexibility of Python and the power of MySQL to boost the productivity of your applications,' UK: Birningham. Packt Publishing Ltd, 2010.
  34. V. Nareyko, 'Why python is perfect for startups,' Retrieved 01 10, 2014 from: http://opensource.com/business/13/12/why-python-perfect-startups
  35. A. Hawkins, 'There is more to becoming a thought leader than giving yourself the title'. Retrieved 10 18, 2013. from: http://www.thesocialmediashow.co.uk/author/admin/
  36. R. Prabowo, and M. Thelwall, 'Sentiment Analysis:A Combined Approach,' International World Wide Web Conference Committee (IW3C2), 2009. UnitedKingdom:Universityof Wolverhamption.
  37. H. Saif, Y. He and H. Alani, 'Alleviating Data Scarcity for Twitter Sentiment Analysis'. Association for Computational Linguistics, 2012

Downloads

Published

2023-06-30

Issue

Section

Research Articles

How to Cite

[1]
Gunjan R. Patil, Rishiraj Shrivastava, Advin Manhar, " Twitter Sentiment Analysis" International Journal of Scientific Research in Computer Science, Engineering and Information Technology(IJSRCSEIT), ISSN : 2456-3307, Volume 9, Issue 3, pp.520-528, May-June-2023. Available at doi : https://doi.org/10.32628/CSEIT23903117