A Web Page Recommendation using Naive-Bayes Algorithm in Hybrid Approach
Keywords:
Naive-Bayes Classifier, Content Based Filtering, Collaborative FilteringAbstract
Web page recommendation has been emerging as a most important application area in mining. In order to predict the users’ interests for effective recommendation two methods such as collaborative filtering and content based filtering are considered. Content based filtering is applied by considering information including user’s profile and the users’ past preferences. User preferences and similarity with other users are considered as primary factor in collaborative filtering method. In probabilistic generative the unobserved user preferences are also considered along with ratings and semantic content. To improve the accuracy and to still improve the user satisfaction this paper applies Naïve- Bayes classifier along with content and collaborative based approach. Naive-Bayes classifier is considered to be more efficient as it considers dynamic and adaptive features for accurate classification. The features that are considered in Naive-Bayes classifier are independent to each other. The performance of the proposed algorithm is measured using the precision and recall.
References
- Zibin Zheng, Hao Ma, Michael R. Lyu, Fellow, and Irwin King, (2011),"QoS-Aware Web Service Recommendation by Collaborative Filtering”,IEEE transactions on services computing, Vol. 4, no. 2, pp. 140-152, June.
- Freddy L'ecu'e,( 2010 ) "Combining Collaborative Filtering and Semantic Content-based Approaches to Recommend WebServices”, IEEE Fourth International Conference on Semantic Computing, pp. 200-205.
- Alexandrin Popescul ,Lyle H. Ungar, David M. Pennock,Steve Lawrence, (2001), "Probabilistic Models for Unified Collaborative and Content-Based Recommendation in Sparse-Data Environments”, Published in Proceedings of the Seventeenth Conference on Uncertainty in Artificial Intelligence, pp. 437444,August.
- Byron Bezerra and Francisco de A. T. E Carvalho, (2004)," A Symbolic Hybrid Approach to Face the New User Problem in Recommender Systems”, SpringerVerlag Berlin Heidelberg, pp. 1011-1016.
- Katja Niemann and Martin Wolpers,( 2015), "Creating Usage Context-Based Object Similarities to Boost Recommender Systems in Technology Enhanced Learning”,IEEE transactions on learning technologies, Vol. 8, no. 3, pp. 274285,September.
- KazuyoshiYoshii,MasatakaGoto,KazunoriKomatani,TetsuyaOgata,HiroshiG.O kuno, (2006),"Hybrid Collaborative and Content-based Music Recommendation Using Probabilistic Model with Latent User Preferences”, Published in University of Victoria.
- Meghna Khatri, (2012), "A Survey of Naive Bayesian Algorithms for Similarity in Recommendation Systems” , International Journal of Advanced Research in Computer Science and Software Engineering,Volume 2, pp. 217219, May.
- Kebin Wang and Ying Tan, (2011),"A New Collaborative Filtering Recommendation Approach Based on Naive Bayesian Method”, SpringerVerlag Berlin Heidelberg, pp. 218-227.
- Mustansar Ali Ghazanfar and Adam Prugel-Bennett, (2004), "An Improved Switching Hybrid Recommender System Using Naive Bayes Classifier and Collaborative Filtering”,School of electronics and Computer Science,University of Southampton,United Kingdom.
- Mingming jiang,Dandan Song,Lejian liao,Feida Zhu, (2015),"A Bayesian Recommender Model for User Rating and Review Profiling”,Tsinghua Science and Technology ,pp 634-643,December.
- Xi Chen, Xudong Liu, Zicheng Huang, and Hailong Sun, (2010), "A Scalable Hybrid Collaborative Filtering Algorithm for Personalized Web Service Recommendation”, IEEE International Conference on Web Services,pp-9-16
- Jonathan L. Herlocker and Joseph A. Konstan, Loren G. Terveen, and John T. Riedl, (2004),"Evaluating Collaborative Filtering Recommender Systems”, ACM Transactions on Information Systems, Vol. no. 22, pp.5-53,January.
- John Z. Sun, Dhruv Parthasarathy, and Kush R. Varshney, (2014), "Collaborative Kalman Filteringfor Dynamic Matrix Factorization”, IEEE Transactions On Signal Processing, Vol.62, pp.3499-3509, July.
- J. Bobadilla, F. Ortega, A. Hernando, A. Gutierrez (2013),"Recommender systems survey” Published in Elsevier,Universidad Politecnica de Madrid, Ctra. De Valencia, Spain,pp.109-132,March.
- Mustansar Ali Ghazanfar and Adam Prugel-Bennett,(2010). "A Scalable, Accurate Hybrid Recommender System”, IEEE Third International Conference on Knowledge Discovery and Data Mining, pp. 94-98
- Lina Yao, Quan Z. Sheng, Member, IEEE, Anne. H.H. Ngu, Jian Yu, and Aviv Segev(2015), "Unified Collaborative and Content-Based Web Service Recommendation”, IEEE Transactions On Services Computing, Vol. 8, No. 3, May/June
- https://en.wikipedia.org/wiki/Naive_Bayes_classifier
- https://en.wikipedia.org/wiki/precision_and_recall_f-measure
- https://en.wikipedia.org/wiki/Recommender_system
- https://en.wikipedia.org/wiki/Web_mining
Downloads
Published
Issue
Section
License
Copyright (c) IJSRCSEIT

This work is licensed under a Creative Commons Attribution 4.0 International License.