A Smart Phone Enabled Driver Monitoring and Alerting System
Keywords:
Head Pose, Lane Detection, Driver Alert, Context Switching, Messaging System, Emergency SystemAbstract
The objective of this research work is to build a driver monitoring system. Nowadays because of the road accidents every year the death rate keep on increasing and the vehicle production rate is also increasing which leads to pollution. Drive Safe application is developed to alert the drivers for dangerous driving events with respect to driver behavior and road conditions. This system focuses on four of the most commonly occurring dangerous driving events: drowsy driving, inattentive driving, lane weaving and drifting, and vehicle detection. Driver behavior is monitored with his head pose and eye state using front camera of the mobile. Similarly, in the rear camera the dangerous driving conditions at the road are detected with respect to lane conditions and vehicles (living being, non-living being) on the road. If the system detects any dangerous events on any of the camera, then it alerts the driver by displaying an alert icon on the phone’s touch screen along with an audible alert message. To process the video frames from both front and rear camera a context-switching algorithm is used. So that the driver will be notices in both the way and alerted for them. A messaging system is also employed to know the urgent and important calls while the driver is driving. An Emergency system is developed to tell about the driver problem to the outside people.
References
- Aidman, E., Chadunow, C., Johnson, K., & Reece, J. (2015). Real-time driver drowsiness feedback improves driver alertness and self-reported driving performance. Accident Analysis and Prevention, 81, 8-13. https://doi.org/10.1016/j.aap.2015.03.041
- All, E. B. V, Road, I., Union, E., Union, E., & Systems, D. A. (2014). Neurocomputing Hybrid computer vision system for drivers â€TM eye recognition and fatigue monitoring Bogus ł aw Cyganek n , S ł awomir Gruszczy ń ski, 126, 78-94. https://doi.org/10.1016/j.neucom.2013.01.048
- Bener, A., Yildirim, E., & Lajunen, T. (2017). ScienceDirect Driver sleepiness , fatigue , careless behavior and risk of motor vehicle crash and injury : Population based case and control study, 4. https://doi.org/10.1016/j.jtte.2017.07.005
- Boboc, G., Dumitru, A. I., Girbacia, T., Postelnicu, C., & Mogan, G. (2018). Computers in Human Behavior Effects of smartphone based advanced driver assistance system on distracted driving behavior : A simulator study, 83, 1-7. https://doi.org/10.1016/j.chb.2018.01.011
- Cheng, W., Liao, H., Pan, M., & Chen, C. (2013). A Fatigue Detection System with Eyeglasses Removal, 331-335.
- Divekar, G., Pradhan, A. K., Masserang, K. M., Reagan, I., Pollatsek, A., & Fisher, D. L. (2013). A simulator evaluation of the effects of attention maintenance training on glance distributions of younger novice drivers inside and outside the vehicle. Transportation Research Part F: Psychology and Behaviour, 20, 154-169. https://doi.org/10.1016/j.trf.2013.07.004
- Dqg, H., Vwhp, O., Ulyhu, I. R. U., Exonkdlu, V., Ovdkol, D. U. Z. D., Wkhhu, D. D. D., … Eudklp, D. E. (2015). 0d\vrrq $exonkdlu, 62(Scse), 555-564. https://doi.org/10.1016/j.procs.2015.08.531
- Dwivedi, K., Biswaranjan, K., & Sethi, A. (2014). Drowsy Driver Detection using Representation Learning, 995-999.
- Eze, E. C., Zhang, S., Liu, E., Nweso, E. N., & Eze, J. C. (2016). Timely and reliable packets delivery over internet of vehicles for road accidents prevention : a cross-layer approach, 5, 127-135. https://doi.org/10.1049/iet-net.2015.0112
- Fazeen, M., Gozick, B., Dantu, R., Bhukhiya, M., & González, M. C. (2012). Short Papers Safe Driving Using Mobile Phones, 13(3), 1462-1468.
- Fazeen, M., Gozick, B., Dantu, R., Bhukhiya, M., & González, M. C. (2012). Short Papers Safe Driving Using Mobile Phones, 13(3), 1462-1468.
- Fernandes, B., Alam, M., Gomes, V., Ferreira, J., & Oliveira, A. (2016). Automatic accident detection with multi-modal alert system implementation for ITS. Vehicular Communications, 3, 1-11. https://doi.org/10.1016/j.vehcom.2015.11.001
- Garg, R., Gupta, V., & Agrawal, V. (n.d.). A Drowsy Driver Detection and Security System.
- Gobhinath, S. (2017). AN AUTOMATIC DRIVER DROWSINESS ALERT SYSTEM BY USING GSM, 125-128.
- Hegde, R. (2017). A Smart Driver Alert System for Vehicle Traffic using Image Detection and Recognition Technique, 1540-1543.
- Hsu, W., & Wang, Y. (2016). Real-Time Driving Monitor System : Combined Cloud Database with GPS, 1740-1748. https://doi.org/10.1109/HICSS.2016.219
- Ige, J., Banstola, A., & Pilkington, P. (2016). Mobile phone use while driving : Underestimation of a global threat. Journal of Transport & Health, 3(1), 4-8. https://doi.org/10.1016/j.jth.2015.11.003
- Jamsa, J., & Kaartinen, H. (2015). Mobile Applications for Traffic Safety.
- Jing, P., Huang, W., & Chen, L. (2017). Car-to-Pedestrian Communication Safety System Based on the Vehicular Ad-Hoc Network Environment : A Systematic Review. https://doi.org/10.3390/info8040127
- Mammeri, A., Zuo, T., & Boukerche, A. (2016). Extending the Detection Range of Vision-Based Vehicular Instrumentation, 65(4), 856-873.
- Mbouna, R. O., Kong, S. G., Member, S., & Chun, M. (2013). Visual Analysis of Eye State and Head Pose for Driver Alertness Monitoring, 14(3), 1462-1469.
- Member, A. C., Galletta, A., Member, S., Carnevale, L., Fazio, M., Lay-ekuakille, A., … Villari, M. (2017). An IoT Cloud System for Traffic Monitoring and Vehicular Accidents Prevention Based on Mobile Sensor Data Processing, 1748(c). https://doi.org/10.1109/JSEN.2017.2777786
- Mohammad, F., Mahadas, K., & Hung, G. K. (2017). Drowsy driver mobile application : Development of a novel scleral-area detection method. Computers in Biology and Medicine, 89(July), 76-83. https://doi.org/10.1016/j.compbiomed.2017.07.027
- Nasar, J., Hecht, P., & Wener, R. (2008). Mobile telephones , distracted attention , and pedestrian safety, 40, 69-75. https://doi.org/10.1016/j.aap.2007.04.005
- Nayak, P. P., & Williams, B. C. (n.d.). Fast Context Switching in Real-time Propositional Reasoning.
- Oviedo-trespalacios, O., Haque, M., King, M., & Washington, S. (2016). Understanding the impacts of mobile phone distraction on driving performance : A systematic review. Transportation Research Part C, 72, 360-380. https://doi.org/10.1016/j.trc.2016.10.006
- Papadakaki, M., Tzamalouka, G., Gnardellis, C., Juhani, T., & Chliaoutakis, J. (2016). Driving performance while using a mobile phone : A simulation study of Greek professional drivers. Transportation Research Part F: Psychology and Behaviour, 38, 164-170. https://doi.org/10.1016/j.trf.2016.02.006
- Planek, T. W., Thomas, J., Schmidt, K., Beggiato, M., Heinz, K., & Krems, J. F. (2014). Letter from the Editors A mathematical model for predicting lane changes using the steering wheel angle. Journal of Safety Research, 49(February), 85.e1-90. https://doi.org/10.1016/j.jsr.2014.02.014
- Ranjan, J. (2009). BUSINESS INTELLIGENCE : CONCEPTS , COMPONENTS , TECHNIQUES AND BENEFITS.
- Sakkila, L., Rivenq, A., Tatkeu, C., Hillali, Y. El, Ghys, J., & Rouvaen, M. (2010). Methods of target recognition for UWB radar, 949-954.
- Salameh, N., Challita, G., Mousset, S., Bensrhair, A., & Ramaswamy, S. (2013). Collaborative positioning and embedded multi-sensors fusion cooperation in advanced driver assistance system. Transportation Research Part C, 29, 197-213. https://doi.org/10.1016/j.trc.2012.05.004
- Sarrafan, K., Muttaqi, K. M., Member, S., Sutanto, D., Member, S., Town, G. E., & Member, S. (2017). An Intelligent Driver Alerting System for Real-Time Range Indicator Embedded in Electric Vehicles, 53(3), 1751-1760.
- Satzoda, R. K., Gunaratne, P., & Trivedi, M. M. (2014). Drive Analysis using Lane Semantics for Data Reduction in Naturalistic Driving Studies, (Iv), 1-6.
- Son, J., Yoo, H., Kim, S., & Sohn, K. (2015). Expert Systems with Applications Real-time illumination invariant lane detection for lane departure warning system. EXPERT SYSTEMS WITH APPLICATIONS, 42(4), 1816-1824. https://doi.org/10.1016/j.eswa.2014.10.024
- Sun, Z., Bebis, G., & Miller, R. (2006). On-Road Vehicle Detection : A Review, 28(5), 694-711.
- Tannahill, V. R., Muttaqi, K. M., & Sutanto, D. (2015). Driver alerting system using range estimation of electric vehicles in real time under dynamically varying environmental conditions, 107-116. https://doi.org/10.1049/iet-est.2014.0067
- Tešic, M., & Andric, Z. (2017). Mobile phone use while driving-literary review, 47, 132-142. https://doi.org/10.1016/j.trf.2017.04.015
- Wang, C., David, B., Chalon, R., & Yin, C. (2015). Dynamic road lane management study q A Smart City application. TRANSPORTATION RESEARCH PART E. https://doi.org/10.1016/j.tre.2015.06.003
- Yi, S., Chen, Y., & Chang, C. (2015). A lane detection approach based on intelligent vision q. Computers and Electrical Engineering, 42(2), 23-29. https://doi.org/10.1016/j.compeleceng.2015.01.002
- You, C., Lane, N. D., Chen, F., Wang, R., Chen, Z., Bao, T. J., … Campbell, A. T. (n.d.). CarSafe App : Alerting Drowsy and Distracted Drivers using Dual Cameras on Smartphones Categories and Subject Descriptors.
- You, C., Lane, N. D., Chen, F., Wang, R., Chen, Z., Bao, T. J., … Campbell, A. T. (n.d.). CarSafe App : Alerting Drowsy and Distracted Drivers using Dual Cameras on Smartphones Categories and Subject Descriptors.
- You, C., Montes-de-oca, M., Bao, T. J., Lane, N. D., Cardone, G., Torresani, L., & Campbell, A. T. (2012). CarSafe : A Driver Safety App that Detects Dangerous Driving Behavior using Dual-Cameras on Smartphones, 5-6.
- Zhang, C., Wang, H., & Fu, R. (2014). Automated Detection of Driver Fatigue Based on Entropy and Complexity Measures, 15(1), 168-177.
Downloads
Published
Issue
Section
License
Copyright (c) IJSRCSEIT

This work is licensed under a Creative Commons Attribution 4.0 International License.