Survey on Melanoma Skin Cancer Detection Methods
DOI:
https://doi.org/10.32628/CSEIT206440Keywords:
Dermoscopy, Rankpot, Segmentation, Clustering, CAD, ROI, FCMAbstract
Skin cancers are generally grouped into either melanoma or non-melanoma skin cancers. Melanoma skin cancers comprise a higher rate of mortality, while non-melanoma skin cancers have a higher frequency rate. This paper describes different methods for the detection and classification of melanoma and non-melanoma skin cancer.
References
- W. Stolz, A. Rieman A.Cognetta, L. Pillet, W. Abmayr, D. Holzel, et al.,"Abcd rule of dermatoscopy-a new practical method for early recognition of malignant-melanoma," Eur. J. Dermatol., vol. 4, pp. 521-527, 1994
- S. W. Menzies, C. Ingvar, K. A. Crotty, and W. H. McCarthy, "Frequency and morphologic characteristics of invasive melanomas lacking specific surface microscopic features," Arch. Dermatol., vol. 132, pp. 1178-1182, 1996.
- T. Lee, V. Ng, R. Gallagher, A. Coldman, and D. McLean, "Dullrazor®: A software approach to hair removal from images," Comput. Biol. Med., vol. 27, pp. 533-543, 1997.
- E.deVries,L.V.vandePollFranse,W.J.Louwman,F.R.deGruijl, and J. W. Coebergh, “Predictions of skin cancer incidence in the Netherlands up to 2015,” Brit. J. Dermatol., vol. 152, no. 3, pp. 481–488, Mar. 2005
- S. Annadurai, and R. Shanmugalakshmi, Fundamentals of Digital Image Processing, Dorling Kindersley, Delhi, 2006.
- J. S. Henning, S. W. Dusza, S. Q. Wang, A. A. Marghoob, H. S. Rabinovitz, D. Polsky, et al., "The CASH (color, architecture, symmetry, and homogeneity) algorithm for dermoscopy," J. Amer. Acad. Dermatol., vol. 56, pp. 45-52, 2007.
- H. Iyatomi, M. E. Celebi, G. Schaefer, and M. Tanaka, "Automated color calibration method for dermoscopy images," Comput. Med. Imag. Graph., vol. 35, pp. 89-98, 2011.
- G. Schaefer, M. I. Rajab, M. Emre Celebi, and H. Iyatomi, "Colour and contrast enhancement for improved skin lesion segmentation," Comput. Med. Imag. Graph., vol. 35, pp. 99-104, 2011.
- G. Capdehourat, A. Corez, A. Bazzano, R. Alonso, and P. Mus´e, “Toward a combined tool to assist dermatologists in melanoma detection from dermoscopic images of pigmented skin lesions,” Pattern Recognition Letters, vol. 32, no. 16, pp. 2187–2196, 2011.
- A. R. A. Ali and T. M. Deserno, "A systematic review of automated melanoma detection in dermatoscopic images and its ground truth data," Proc. SPIE Med. Imag., vol. 8318, pp. 83181I-1-83181I-11, 2012
- Smaoui N and Bessassi s,” Detection of Melanoma Skin Cancer in Dermoscopy Images”,International Journal of Computer Vision and Signal Processing 3 10-17,2013.
- U. Jamil and S. Khalid, "Comparative study of classification techniques used in skin lesion detection systems," presented at the IEEE Int. Multitopic Conf., 2014.
- A. Sáez, C. Serrano, and B. Acha, "Model-Based Classification Methods of Global Patterns in Dermoscopic Images," IEEE Trans. Med. Imag., vol. 33, pp. 1137-1147, 2014.
- N. Codella, J. Cai, M. Abedini, R. Garnavi, A. Halpern, and J. R. Smith, "Deep Learning, Sparse Coding, and SVM for Melanoma Recognition in Dermoscopy Images," presented at the Proc. Med. Imag. Comput. Comput. Assist. Interv., 2015.
- M. Rastgoo, R. Garcia, O. Morel, and F. Marzani, "Automatic differentiation of melanoma from dysplastic nevi," Comput. Med. Imag. Graph., vol. 43, pp. 44-52, 2015.
- K. Shimizu, H. Iyatomi, M. E. Celebi, K. A. Norton, and M. Tanaka, "Four-Class Classification of Skin Lesions With Task Decomposition Strategy," IEEE Trans. Biomed. Eng., vol. 62, pp. 274-283, 2015.
- R. Kasmi and K. Mokrani, "Classification of malignant melanoma and benign skin lesions: implementation of automatic ABCD rule," IET Image Processing, vol. 10, pp. 448-455, 2016.
- D. Gutman, N. C. Codella, E. Celebi, B. Helba, M. Marchetti, N. Mishra, et al. (2016, Skin Lesion Analysis toward Melanoma Detection: A Challenge at the International Symposium on Biomedical Imaging (ISBI) 2016
- L. Bi, J. Kim, E. Ahn, D. Feng, and M. Fulham, "Automatic melanoma detection via multi-scale lesion-biased representation and joint reverse classification," presented at the Proc. IEEE 13th Int. Symp. Biomed. Imag, 2016.
- Khalid Eltayef1, Yongmin Li1, Bashir I. Dodo1, and Xiaohui Liu1, " Skin Cancer Detection in Dermoscopy Images Using Sub-Region Features,"Conference Paper , October 2017.
- Zhen Yu, Xudong Jiang, Senior Member, IEEE, Feng Zhou, Jing Qin, Member, IEEE, Dong Ni, Member, IEEE, Siping Chen, Baiying Lei*, Senior Member, IEEE, and Tianfu Wang*, " Melanoma Recognition in Dermoscopy Images via Aggregated Deep Convolutional Features," IEEE Transactions on Biomedical Engineering., 2018.
Downloads
Published
2020-08-30
Issue
Section
Research Articles
License
Copyright (c) IJSRCSEIT

This work is licensed under a Creative Commons Attribution 4.0 International License.
How to Cite
[1]
Indula Subash, Dr. L. C. Manikandan, "
Survey on Melanoma Skin Cancer Detection Methods" International Journal of Scientific Research in Computer Science, Engineering and Information Technology(IJSRCSEIT), ISSN : 2456-3307,
Volume 6, Issue 4, pp.228-234, July-August-2020. Available at doi : https://doi.org/10.32628/CSEIT206440