Survey on Melanoma Skin Cancer Detection Methods

Authors

  • Indula Subash  M.Tech Scholar, Department of CSE, Musaliar College of Engineering and Technology, Pathanamthitta, Kerala, India
  • Dr. L. C. Manikandan  Professor & HoD, Department of CSE, Musaliar College of Engineering and Technology, Pathanamthitta, Kerala, India

DOI:

https://doi.org/10.32628/CSEIT206440

Keywords:

Dermoscopy, Rankpot, Segmentation, Clustering, CAD, ROI, FCM

Abstract

Skin cancers are generally grouped into either melanoma or non-melanoma skin cancers. Melanoma skin cancers comprise a higher rate of mortality, while non-melanoma skin cancers have a higher frequency rate. This paper describes different methods for the detection and classification of melanoma and non-melanoma skin cancer.

References

  1. W. Stolz, A. Rieman A.Cognetta, L. Pillet, W. Abmayr, D. Holzel, et al.,"Abcd rule of dermatoscopy-a new practical method for early recognition of malignant-melanoma," Eur. J. Dermatol., vol. 4, pp. 521-527, 1994
  2. S. W. Menzies, C. Ingvar, K. A. Crotty, and W. H. McCarthy, "Frequency and morphologic characteristics of invasive melanomas lacking specific surface microscopic features," Arch. Dermatol., vol. 132, pp. 1178-1182, 1996.
  3. T. Lee, V. Ng, R. Gallagher, A. Coldman, and D. McLean, "Dullrazor®: A software approach to hair removal from images," Comput. Biol. Med., vol. 27, pp. 533-543, 1997.
  4. E.deVries,L.V.vandePollFranse,W.J.Louwman,F.R.deGruijl, and J. W. Coebergh, “Predictions of skin cancer incidence in the Netherlands up to 2015,” Brit. J. Dermatol., vol. 152, no. 3, pp. 481–488, Mar. 2005
  5. S. Annadurai, and R. Shanmugalakshmi, Fundamentals of Digital Image Processing, Dorling Kindersley, Delhi, 2006.
  6. J. S. Henning, S. W. Dusza, S. Q. Wang, A. A. Marghoob, H. S. Rabinovitz, D. Polsky, et al., "The CASH (color, architecture, symmetry, and homogeneity) algorithm for dermoscopy," J. Amer. Acad. Dermatol., vol. 56, pp. 45-52, 2007.
  7. H. Iyatomi, M. E. Celebi, G. Schaefer, and M. Tanaka, "Automated color calibration method for dermoscopy images," Comput. Med. Imag. Graph., vol. 35, pp. 89-98, 2011.
  8. G. Schaefer, M. I. Rajab, M. Emre Celebi, and H. Iyatomi, "Colour and contrast enhancement for improved skin lesion segmentation," Comput. Med. Imag. Graph., vol. 35, pp. 99-104, 2011.
  9. G. Capdehourat, A. Corez, A. Bazzano, R. Alonso, and P. Mus´e, “Toward a combined tool to assist dermatologists in melanoma detection from dermoscopic images of pigmented skin lesions,” Pattern Recognition Letters, vol. 32, no. 16, pp. 2187–2196, 2011.
  10. A. R. A. Ali and T. M. Deserno, "A systematic review of automated melanoma detection in dermatoscopic images and its ground truth data," Proc. SPIE Med. Imag., vol. 8318, pp. 83181I-1-83181I-11, 2012
  11. Smaoui N and Bessassi s,” Detection of Melanoma Skin Cancer in Dermoscopy Images”,International Journal of Computer Vision and Signal Processing 3 10-17,2013.
  12. U. Jamil and S. Khalid, "Comparative study of classification techniques used in skin lesion detection systems," presented at the IEEE Int. Multitopic Conf., 2014.
  13. A. Sáez, C. Serrano, and B. Acha, "Model-Based Classification Methods of Global Patterns in Dermoscopic Images," IEEE Trans. Med. Imag., vol. 33, pp. 1137-1147, 2014.
  14. N. Codella, J. Cai, M. Abedini, R. Garnavi, A. Halpern, and J. R. Smith, "Deep Learning, Sparse Coding, and SVM for Melanoma Recognition in Dermoscopy Images," presented at the Proc. Med. Imag. Comput. Comput. Assist. Interv., 2015.
  15. M. Rastgoo, R. Garcia, O. Morel, and F. Marzani, "Automatic differentiation of melanoma from dysplastic nevi," Comput. Med. Imag. Graph., vol. 43, pp. 44-52, 2015.
  16. K. Shimizu, H. Iyatomi, M. E. Celebi, K. A. Norton, and M. Tanaka, "Four-Class Classification of Skin Lesions With Task Decomposition Strategy," IEEE Trans. Biomed. Eng., vol. 62, pp. 274-283, 2015.
  17. R. Kasmi and K. Mokrani, "Classification of malignant melanoma and benign skin lesions: implementation of automatic ABCD rule," IET Image Processing, vol. 10, pp. 448-455, 2016.
  18. D. Gutman, N. C. Codella, E. Celebi, B. Helba, M. Marchetti, N. Mishra, et al. (2016, Skin Lesion Analysis toward Melanoma Detection: A Challenge at the International Symposium on Biomedical Imaging (ISBI) 2016
  19. L. Bi, J. Kim, E. Ahn, D. Feng, and M. Fulham, "Automatic melanoma detection via multi-scale lesion-biased representation and joint reverse classification," presented at the Proc. IEEE 13th Int. Symp. Biomed. Imag, 2016.
  20. Khalid Eltayef1, Yongmin Li1, Bashir I. Dodo1, and Xiaohui Liu1, " Skin Cancer Detection in Dermoscopy Images Using Sub-Region Features,"Conference Paper , October 2017.
  21. Zhen Yu, Xudong Jiang, Senior Member, IEEE, Feng Zhou, Jing Qin, Member, IEEE, Dong Ni, Member, IEEE, Siping Chen, Baiying Lei*, Senior Member, IEEE, and Tianfu Wang*, " Melanoma Recognition in Dermoscopy Images via Aggregated Deep Convolutional Features," IEEE Transactions on Biomedical Engineering., 2018.

Downloads

Published

2020-08-30

Issue

Section

Research Articles

How to Cite

[1]
Indula Subash, Dr. L. C. Manikandan, " Survey on Melanoma Skin Cancer Detection Methods" International Journal of Scientific Research in Computer Science, Engineering and Information Technology(IJSRCSEIT), ISSN : 2456-3307, Volume 6, Issue 4, pp.228-234, July-August-2020. Available at doi : https://doi.org/10.32628/CSEIT206440