Visual Sentiment Analysis on Social Media Data
DOI:
https://doi.org/10.32628/CSEIT2174101Keywords:
Sentiment analysis ,CNN, ResNet , GoogLNet, VGG Net, Feature extraction ,subjective ,objectiveAbstract
Visual sentiment analysis is the way to automatically recognize positive and negative emotions from images, videos, graphics, stickers etc. To estimate the polarity of the sentiment evoked by images in terms of positive or negative sentiment, most of the state-of-the-art works exploit the text associated to a social post provided by the user. However, such textual data is typically noisy due to the subjectivity of the user which usually includes text useful to maximize the diffusion of the social post. Proposed system will extract and employ an Objective Text description of images automatically extracted from the visual content rather than the classic Subjective Text provided by the user. The proposed System will extract three views visual view, subjective text view and objective text view of social media image and will give sentiment polarity positive, negative or neutral based on hypothesis table.
References
- Alessandro Ortis Giovanni M. Farinella,Giovanni Torrisi,Sebastiano Battiato Visual Sentiment Analysis Based on Objective Text [Journal]. - Catania, Italy : IEEE, 2018. - Vols. 978-1-5386-7021-7/18/.
- B. Zhou A. Lapedriza, J. Xiao, A. Torralba, and A. Oliva Learning deep features for scene recognition using places database [Journal]. - 3Universitat Oberta de Catalunya : [s.n.]. - Vols. Advances in Neural Information Processing Systems, 2014, pp. 487–495.
- Bertini1 Claudio Baecchi1 ·Tiberio Uricchio1 · Marco A multimodal feature learning approach for sentiment [Journal]. - New York : Springer, 2015.
- C. Szegedy W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, Going deeper with convolutions [Journal]. - [s.l.] : IEEE, 2015. - Vol. In proceedings of the IEEE Conference on Computer Vision and Pattern.
- Eunjeong Ko Chanhee Yoon,Eun Yi Kim Discovering Visual Features for Recognizing User’s [Journal]. - Konkuk University,South Korea : IEEE, 2016. - Vols. 978-1-4673-8796-5/16.
- Fei-Fei A. Karpathy and L. Deep visual-semantic alignments for generating image descriptions [Journal]. - [s.l.] : IEEE. - Vols. JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015.
- https://monkeylearn.com/sentiment-analysis/ [Online] // https://monkeylearn.com.
- Junfeng Yao Yao Yu and Xiaoling Xue Sentiment Prediction In Scene Images Via Convolution Neural Networks [Journal]. - Beijing,China : IEEE, 2016. - Vols. 978-1-5090-4423-8/16.
- Kaikai Songa Ting Yaob, Qiang Linga,∗, Tao Mei Boosting Image Sentiment Analysis with Visual Attention [Journal]. - China : ELSEWHERE, 2018.
- Marie Katsurai Shin’ichi Satoh IMAGE SENTIMENT ANALYSIS USING LATENT CORRELATIONS AMONG VISUAL, [Journal]. - Tokyo, Japan : IEEE, 2016. - Vols. 978-1-4799-9988-0/16.
- Varshney Mayank Amencherla and Lav R. Color-Based Visual Sentiment for Social [Journal]. - Urbana-Champaign : IEEE, 2017. - Vols. 978-1-5090-6026-9/17.
Downloads
Published
Issue
Section
License
Copyright (c) IJSRCSEIT

This work is licensed under a Creative Commons Attribution 4.0 International License.