Comparison of Different Clustering Algorithms to Secured VANETs Communication

Authors

  • Prashant Kumar Shrivastava  P.H.D. Scholar C.S.E Department, Oriental University Indore, India
  • Dr. L. K. Vishwamitra  Professor C.S.E Department, Oriental University Indore, India

DOI:

https://doi.org/10.32628/CSEIT217613

Keywords:

Terms-Intelligent Transportation System, VANETs Characteristics & challenges, Data dissemination, Clustering, Security, MAC protocols

Abstract

ITS (Intelligent Transportation Systems) are growing increasingly popular because of the necessity for superior cyber-physical systems and comfort applications and services required for usage in autonomous vehicles. There are two types of Vehicular Ad-Hoc Networks (VANETs) that are vital to ITS: V2I (Vehicle-to-Infrastructure) and V2V (Vehicle-to-Vehicle). VANETs are a new technology with several potential uses in the ITS. It comprises smart vehicles and roadside equipment that connect over open-access wireless networks. An attacker may disrupt vehicular communication which can lead to potentially life-threatening scenarios because of the significant expansion in the number of vehicles in use today. VANETs must use robust security and authentication procedures to provide safe vehicular communication. This paper provides a comprehensive analysis ofthe VANET system including its characteristics and challenges. There is a concept of data dissemination that has been provided in brief. Clustering is the most important topic in VANET that is used to cluster the vehicles to secure and safely message transmission over the network. There is a taxonomy of clustering techniques has provided in a detailed manner. Besides, it has also shown the comparison of different clustering parameters-based mechanisms and MAC protocols in VANET.

References

  1. M. S. Devi and K. Malar, “Improved Performance Modeling of Intelligent Safety Message Broadcast in Vanet: A Survey,” in 2014 International Conference on Intelligent Computing Applications, 2014, pp. 95–98, doi: 10.1109/ICICA.2014.29.
  2. Y. Yao, K. Zhang, and X. Zhou, “A Flexible Multi-Channel Coordination MAC Protocol for Vehicular Ad Hoc Networks,” IEEE Commun. Lett., vol. 21, no. 6, pp. 1305–1308, 2017, doi: 10.1109/LCOMM.2017.2681060.
  3. Z. Peng, S. Gao, Z. Li, B. Xiao, and Y. Qian, “Vehicle Safety Improvement through Deep Learning and Mobile Sensing,” IEEE Netw., vol. 32, no. 4, pp. 28–33, 2018, doi: 10.1109/MNET.2018.1700389.
  4. J. Tian and F. Meng, “Comparison Survey of Mobility Models in Vehicular Ad-Hoc Network (VANET),” in 2020 IEEE 3rd International Conference on Automation, Electronics and Electrical Engineering (AUTEEE), 2020, pp. 337–342, doi: 10.1109/AUTEEE50969.2020.9315583.
  5. D. Jiang, V. Taliwal, A. Meier, W. Holfelder, and R. Herrtwich, “Design of 5.9 ghz dsrc-based vehicular safety communication,” IEEE Wirel. Commun., vol. 13, no. 5, pp. 36–43, 2006, doi: 10.1109/WC-M.2006.250356.
  6. R. Al-ani, B. Zhou, Q. Shi, and A. Sagheer, “A Survey on Secure Safety Applications in VANET,” in 2018 IEEE 20th International Conference on High Performance Computing and Communications; IEEE 16th International Conference on Smart City; IEEE 4th International Conference on Data Science and Systems (HPCC/SmartCity/DSS), 2018, pp. 1485–1490, doi: 10.1109/HPCC/SmartCity/DSS.2018.00245.
  7. A. khan, M. Ishtiaq, S. Anwar, and M. A. Shah, “A Survey on secure routing strategies in VANETs,” in 2019 25th International Conference on Automation and Computing (ICAC), 2019, pp. 1–6, doi: 10.23919/IConAC.2019.8895221.
  8. A. Singh and S. Kad, “A Review on the Various Security Techniques for VANETs,” Procedia Comput. Sci., vol. 78, pp. 284–290, 2016, doi: https://doi.org/10.1016/j.procs.2016.02.055.
  9. S. Sharma and B. Kaushik, “A survey on internet of vehicles: Applications, security issues & solutions,” Veh. Commun., vol. 20, p. 100182, 2019, doi: https://doi.org/10.1016/j.vehcom.2019.100182.
  10. R. Kaur, R. K. Ramachandran, R. Doss, and L. Pan, “The importance of selecting clustering parameters in VANETs: A survey,” Comput. Sci. Rev., vol. 40, p. 100392, 2021, doi: https://doi.org/10.1016/j.cosrev.2021.100392.
  11. L. H. S. Lopes, R. A. F. Mini, and F. Cunha, “A V2X Approach for Data Dissemination in Vehicular Ad Hoc Networks,” 2019, doi: 10.1109/ISCC47284.2019.8969698.
  12. C. Cooper, D. Franklin, M. Ros, F. Safaei, and M. Abolhasan, “A Comparative Survey of VANET Clustering Techniques,” IEEE Commun. Surv. Tutorials, vol. 19, no. 1, pp. 657–681, 2017, doi: 10.1109/COMST.2016.2611524.
  13. S. Basagni, “Distributed clustering for ad hoc networks,” in Proceedings Fourth International Symposium on Parallel Architectures, Algorithms, and Networks (I-SPAN’99), 1999, pp. 310–315, doi: 10.1109/ISPAN.1999.778957.
  14. G. Wolny, “Modified DMAC Clustering Algorithm for VANETs,” in 2008 Third International Conference on Systems and Networks Communications, 2008, pp. 268–273, doi: 10.1109/ICSNC.2008.28.
  15. R. A. Santos, R. M. Edwards, and A. Edwards, “Cluster-based location routing algorithm for inter-vehicle communication,” in IEEE 60th Vehicular Technology Conference, 2004. VTC2004-Fall. 2004, 2004, vol. 2, pp. 914-918 Vol. 2, doi: 10.1109/VETECF.2004.1400154.
  16. C. Cooper, M. Ros, F. Safaei, D. Franklin, and M. Abolhasan, “Simulation of Contrasting Clustering Paradigms under an Experimentally-Derived Channel Model,” in 2014 IEEE 80th Vehicular Technology Conference (VTC2014-Fall), 2014, pp. 1–6, doi: 10.1109/VTCFall.2014.6966179.
  17. E. Souza, I. Nikolaidis, and P. Gburzynski, “A New Aggregate Local Mobility (ALM) Clustering Algorithm for VANETs,” in 2010 IEEE International Conference on Communications, 2010, pp. 1–5, doi: 10.1109/ICC.2010.5501789.
  18. D. Jia, K. Lu, J. Wang, X. Zhang, and X. Shen, “A Survey on Platoon-Based Vehicular Cyber-Physical Systems,” IEEE Commun. Surv. Tutorials, vol. 18, no. 1, pp. 263–284, 2016, doi: 10.1109/COMST.2015.2410831.
  19. S. Ucar, S. C. Ergen, and O. Ozkasap, “Multihop-Cluster-Based IEEE 802.11p and LTE Hybrid Architecture for VANET Safety Message Dissemination,” IEEE Trans. Veh. Technol., vol. 65, no. 4, pp. 2621–2636, 2016, doi: 10.1109/TVT.2015.2421277.
  20. C. Shea, B. Hassanabadi, and S. Valaee, “Mobility-Based Clustering in VANETs Using Affinity Propagation,” in GLOBECOM 2009 - 2009 IEEE Global Telecommunications Conference, 2009, pp. 1–6, doi: 10.1109/GLOCOM.2009.5425236.
  21. D. Lin, J. Kang, A. Squicciarini, Y. Wu, S. Gurung, and O. Tonguz, “MoZo: A Moving Zone Based Routing Protocol Using Pure V2V Communication in VANETs,” IEEE Trans. Mob. Comput., vol. 16, no. 5, pp. 1357–1370, 2017, doi: 10.1109/TMC.2016.2592915.
  22. M. S. Almalag, S. Olariu, and M. C. Weigle, “TDMA cluster-based MAC for VANETs (TC-MAC),” in 2012 IEEE International Symposium on a World of Wireless, Mobile and Multimedia Networks (WoWMoM), 2012, pp. 1–6, doi: 10.1109/WoWMoM.2012.6263796.
  23. Y. Luo, W. Zhang, and Y. Hu, “A new cluster based routing protocol for VANET,” Networks Secur. Wirel. Commun. Trust. Comput. Int. Conf., vol. 1, pp. 176–180, 2010, doi: 10.1109/NSWCTC.2010.48.
  24. H. Su and X. Zhang, “Clustering-Based Multichannel MAC Protocols for QoS Provisionings Over Vehicular Ad Hoc Networks,” Veh. Technol. IEEE Trans., vol. 56, pp. 3309–3323, 2007, doi: 10.1109/TVT.2007.907233.
  25. A. Benslimane, T. Taleb, and R. Sivaraj, “Dynamic Clustering-Based Adaptive Mobile Gateway Management in Integrated VANET — 3G Heterogeneous Wireless Networks,” IEEE J. Sel. Areas Commun., vol. 29, no. 3, pp. 559–570, 2011, doi: 10.1109/JSAC.2011.110306.
  26. M. Khabazian and M. K. M. Ali, “A Performance Modeling of Connectivity in Vehicular <emphasis emphasistype="italic">Ad Hoc</emphasis> Networks,” IEEE Trans. Veh. Technol., vol. 57, no. 4, pp. 2440–2450, 2008, doi: 10.1109/TVT.2007.912161.
  27. S. Dornbush and A. Joshi, “StreetSmart Traffic: Discovering and Disseminating Automobile Congestion Using VANET’s,” in 2007 IEEE 65th Vehicular Technology Conference - VTC2007-Spring, 2007, pp. 11–15, doi: 10.1109/VETECS.2007.15.
  28. L. Bononi and M. di Felice, “A Cross Layered MAC and Clustering Scheme for Efficient Broadcast in VANETs,” in 2007 IEEE International Conference on Mobile Adhoc and Sensor Systems, 2007, pp. 1–8, doi: 10.1109/MOBHOC.2007.4428735.
  29. T. Taleb, A. Benslimane, and K. Ben Letaief, “Toward an Effective Risk-Conscious and Collaborative Vehicular Collision Avoidance System,” IEEE Trans. Veh. Technol., vol. 59, no. 3, pp. 1474–1486, 2010, doi: 10.1109/TVT.2010.2040639.
  30. G. el mouna Zhioua, N. Tabbane, H. Labiod, and S. Tabbane, “A Fuzzy Multi-Metric QoS-Balancing Gateway Selection Algorithm in a Clustered VANET to LTE Advanced Hybrid Cellular Network,” IEEE Trans. Veh. Technol., vol. 64, no. 2, pp. 804–817, 2015, doi: 10.1109/TVT.2014.2323693.
  31. Y. Gunter, B. Wiegel, and H. P. Grossmann, “Cluster-based Medium Access Scheme for VANETs,” in 2007 IEEE Intelligent Transportation Systems Conference, 2007, pp. 343–348, doi: 10.1109/ITSC.2007.4357651.
  32. G. Remy, S.-M. Senouci, F. Jan, and Y. Gourhant, “LTE4V2X: LTE for a Centralized VANET Organization,” in 2011 IEEE Global Telecommunications Conference - GLOBECOM 2011, 2011, pp. 1–6, doi: 10.1109/GLOCOM.2011.6133884.
  33. K. Ibrahim and M. C. Weigle, “CASCADE: Cluster-Based Accurate Syntactic Compression of Aggregated Data in VANETs,” in 2008 IEEE Globecom Workshops, 2008, pp. 1–10, doi: 10.1109/GLOCOMW.2008.ECP.59.
  34. M. Slavik and I. Mahgoub, “Spatial Distribution and Channel Quality Adaptive Protocol for Multihop Wireless Broadcast Routing in VANET,” IEEE Trans. Mob. Comput., vol. 12, no. 4, pp. 722–734, 2013, doi: 10.1109/TMC.2012.42.
  35. J. T. Isaac, S. Zeadally, and J. S. Cámara, “Security attacks and solutions for vehicular ad hoc networks,” IET Commun., vol. 4, no. 7, pp. 894–903, 2010, doi: 10.1049/iet-com.2009.0191.
  36. A. Srivastava, A. Prakash, and R. Tripathi, “Fuzzy-based beaconless probabilistic broadcasting for information dissemination in urban VANET,” Ad Hoc Networks, vol. 108, p. 102285, 2020, doi: https://doi.org/10.1016/j.adhoc.2020.102285.
  37. M. Ramalingam and R. Thangarajan, “Mutated k-means algorithm for dynamic clustering to perform effective and intelligent broadcasting in medical surveillance using selective reliable broadcast protocol in VANET,” Comput. Commun., vol. 150, pp. 563–568, 2020, doi: https://doi.org/10.1016/j.comcom.2019.11.023.
  38. Z. Khan, S. Fang, A. Koubaa, P. Fan, F. Abbas, and H. Farman, “Street-centric routing scheme using ant colony optimization-based clustering for bus-based vehicular ad-hoc network,” Comput. Electr. Eng., vol. 86, p. 106736, 2020, doi: https://doi.org/10.1016/j.compeleceng.2020.106736.
  39. S. A. Alghamdi, “Novel path similarity aware clustering and safety message dissemination via mobile gateway selection in cellular 5G-based V2X and D2D communication for urban environment,” Ad Hoc Networks, vol. 103, p. 102150, 2020, doi: https://doi.org/10.1016/j.adhoc.2020.102150.
  40. S. Wang, Q. Zhang, and G. Chen, “V2V-CoVAD: A vehicle-to-vehicle cooperative video alert dissemination mechanism for Internet of Vehicles in a highway environment,” Veh. Commun., p. 100418, 2021, doi: https://doi.org/10.1016/j.vehcom.2021.100418.
  41. X. Shen, H. Yu, X. Liu, Q. Bin, A. K. Luhach, and V. Saravanan, “The optimized energy-efficient sensible edge processing model for the internet of vehicles in smart cities,” Sustain. Energy Technol. Assessments, vol. 47, p. 101477, 2021, doi: https://doi.org/10.1016/j.seta.2021.101477.
  42. S. Zhang, M. Lagutkina, K. O. Akpinar, and M. Akpinar, “Improving performance and data transmission security in VANETs,” Comput. Commun., vol. 180, pp. 126–133, 2021, doi: https://doi.org/10.1016/j.comcom.2021.09.005.

Downloads

Published

2021-12-30

Issue

Section

Research Articles

How to Cite

[1]
Prashant Kumar Shrivastava, Dr. L. K. Vishwamitra, " Comparison of Different Clustering Algorithms to Secured VANETs Communication" International Journal of Scientific Research in Computer Science, Engineering and Information Technology(IJSRCSEIT), ISSN : 2456-3307, Volume 7, Issue 6, pp.59-75, November-December-2021. Available at doi : https://doi.org/10.32628/CSEIT217613