Predict Your Customer Through Customer Behavior with Dynamic Churn Prediction Using Machine Learning Algorithms

Authors

  • K. Harisesha Chandana  Department of Computer Science and Engineering, Sree Rama Engineering College, Tirupati, Andhra Pradesh, India
  • G. Lakshmikanth  Department of Computer Science and Engineering, Sree Rama Engineering College, Tirupati, Andhra Pradesh, India

Keywords:

Supervised learning, Machine Learning, Random Forest Algorithm and Support Vector Machines.

Abstract

In current days, the customers are getting more attracted towards the quality of service (QoS) provided by the organizations. However, the current era is evidencing higher competition in providing technologically advanced QoS to the customers. Nevertheless, efficient customer relationship management systems can be advantageous for the organization for gaining more customers, maintaining customer relationships and improve customer retention by adding more profit to the organizational business. Furthermore, the machine learning models such as support vector machine Random Forest algorithms can add more value to the customer retention strategies.

References

  1. Siu NY, Zhang TJ, Yau CY. The roles of justice and customer satisfaction in customer retention: A lesson from service recovery. Journal of business ethics. 2013 Jun 1;114 (4):675-86.
  2. Hossain MM, Suchy NJ. Influence of customer satisfaction on loyalty: A study on mobile telecommunication industry. Journal of Social Sciences. 2013;9(2):73-80.
  3. Maldonado S, Flores Á, Verbraken T, Baesens B, Weber R. Profitbased feature selection using support vector machines–General framework and an application for customer retention. Applied Soft Computing. 2015 Oct 1;35:740-8.
  4. Maga M, Canale P, Bohe A, inventors; Accenture Global Services Ltd, assignee. Churn prediction and management system. United States patent US 8,712,828. 2014 Apr 29
  5. M.  Shaw, C.  Subramaniam, G.  W.  Tan, and M.  E.  Welge, “Knowledge management and data mining for marketing,” Decision Support Systems, Vol. 31, no. 1, 2001, pp. 127-137. 
  6. C.  P.  Wei and I.  T.  Chiu,  “Turning  telecommunications  call  details  to  churn  prediction:  a  data  mining  approach,” Expert  Systems with Applications, Vol. 23, 2002, pp. 103-112. 
  7. J.  H. Ahn, S. P.  Han, and Y. S.  Lee, “Customer churn analysis:  Churn determinants and  mediation effects of partial defection in  the  Korean  mobile  telecommunications  service  industry,”  Telecommunications  Policy,  Vol.  30, Issues 10–11, 2006, pp.  552-568. 
  8. V.  García . I. Marqués,  and J.  S.  Sánchez,  “Non-parametric  Statistical  Analysis  of  Machine  Learning  Methods  for  Credit  Scoring,” Advances  in  Intelligent  Systems  and  Computing,  Volume 171, 2012, pp. 263-272. 
  9. S.  Chakrabarti, M.  Ester, U.  Fayyad, J.  Gehrke, J.  Han, S.  Morishita, G.  Piatetsky-Shapiro, and W. Wang, “Data Mining Curriculum: A Proposal,” Version 1.0, 2006.
  10. STOSIC D, STOSIC D, LUDERMIR T. Voting based q-generalized extreme learning machine. Neurocomputing, 2016, 174: 1021–1030.
  11. Jadhav, R. J., & Pawar, U. T. (2011). Churn prediction in telecommunication using data mining technology. International Journal of Advanced Computer Science and Applications, 2(2).
  12. Phadke, C., Uzunalioglu, H., Mendiratta, V. B., Kushnir, D., & Doran, D. (2013). Prediction of subscriber churn using social network analysis. Bell Labs Technical Journal, 17(4), 63-76.
  13. Rosenberg, L. J., & Czepiel, J. A. (1984). A marketing approach for customer retention. Journal of consumer marketing, 1(2), 45-51.
  14. Vafeiadis, T., Diamantaras, K. I., Sarigiannidis, G., & Chatzisavvas, K. C. (2015). A comparison of machine learning techniques for customer churn prediction. Simulation Modelling Practice and Theory, 55, 1-9.

Downloads

Published

2022-10-30

Issue

Section

Research Articles

How to Cite

[1]
K. Harisesha Chandana, G. Lakshmikanth, " Predict Your Customer Through Customer Behavior with Dynamic Churn Prediction Using Machine Learning Algorithms" International Journal of Scientific Research in Computer Science, Engineering and Information Technology(IJSRCSEIT), ISSN : 2456-3307, Volume 8, Issue 5, pp.112-121, September-October-2022.