Zero Trust Architecture Leveraging AI-Driven Behavior Analytics for Industrial Control Systems in Energy Distribution Networks
DOI:
https://doi.org/10.32628/CSEIT23564522Keywords:
Zero Trust Architecture (ZTA); Industrial Control Systems (ICS); AI-Driven Behavior Analytics; Energy Distribution Networks; Cybersecurity for Operational TechnologyAbstract
The growing digitization and interconnectivity of energy distribution networks have increased their vulnerability to sophisticated cyber threats, particularly within Industrial Control Systems (ICS). Traditional perimeter-based security approaches are no longer sufficient to address the evolving threat landscape. This review explores the integration of Zero Trust Architecture (ZTA) with AI-driven behavior analytics to enhance cybersecurity in ICS across energy distribution networks. ZTA, built on the principle of "never trust, always verify," requires rigorous identity verification, least privilege access, and continuous monitoring. When paired with artificial intelligence, behavior analytics can autonomously identify deviations from baseline operational behavior, detect anomalies, and preemptively respond to insider threats or advanced persistent threats (APTs) without manual intervention. This paper analyzes the challenges of legacy ICS integration, models for AI-driven behavioral profiling, trust scoring, real-time authentication, and policy enforcement mechanisms. Additionally, it examines use cases in power grids, substations, and SCADA systems, emphasizing regulatory compliance and resilience strategies. By synthesizing current literature, standards, and technological advancements, this review outlines a comprehensive framework for deploying intelligent Zero Trust solutions in the critical infrastructure sector. The study also identifies open challenges and future directions for scalable, AI-enhanced Zero Trust deployments tailored to operational technologies (OT).
References
- Abiodun, K., Ogbuonyalu, U. O., Dzamefe, S., Vera, E. N., Oyinlola, A., & Igba, E. (2023). Exploring Cross-Border Digital Assets Flows and Central Bank Digital Currency Risks to Capital Markets Financial Stability. International Journal of Scientific Research and Modern Technology, 2(11), 32–45. https://doi.org/10.38124/ijsrmt.v2i11.447
- Ahmed, M., Mahmood, A. N., & Hu, J. (2016). A survey of network anomaly detection techniques. Journal of Network and Computer Applications, 60, 19–31. https://doi.org/10.1016/j.jnca.2015.11.016
- Alrawais, A., Alhothaily, A., Hu, C., & Cheng, X. (2017). Fog computing for the Internet of Things: Security and privacy issues. IEEE Internet Computing, 21(2), 34–42. https://doi.org/10.1109/MIC.2017.37
- Amin, S., Cárdenas, A. A., & Sastry, S. (2013). Safe and secure networked control systems under denial-of-service attacks. Hybrid Systems: Computation and Control, 17(1), 31–45. https://doi.org/10.1145/2461328.2461333
- Atalor, S. I. (2019). Federated Learning Architectures for Predicting Adverse Drug Events in Oncology Without Compromising Patient Privacy ICONIC RESEARCH AND ENGINEERING JOURNALS JUN 2019 | IRE Journals | Volume 2 Issue 12 | ISSN: 2456-8880
- Atalor, S. I., Ijiga, O. M., & Enyejo, J. O. (2023). Harnessing Quantum Molecular Simulation for Accelerated Cancer Drug Screening. International Journal of Scientific Research and Modern Technology, 2(1), 1–18. https://doi.org/10.38124/ijsrmt.v2i1.502
- Atalor, S. I., Raphael, F. O. & Enyejo, J. O. (2023). Wearable Biosensor Integration for Remote Chemotherapy Monitoring in Decentralized Cancer Care Models. International Journal of Scientific Research in Science and Technology Volume 10, Issue 3 (www.ijsrst.com) doi : https://doi.org/10.32628/IJSRST23113269
- Bhamare, D., Samaka, M., Erbad, A., Jain, R., & Gupta, L. (2020). Cybersecurity for industrial control systems: A survey. Computer Communications, 155, 1–29. https://doi.org/10.1016/j.comcom.2020.03.005
- Biggio, B., & Roli, F. (2018). Wild patterns: Ten years after the rise of adversarial machine learning. Pattern Recognition, 84, 317–331. https://doi.org/10.1016/j.patcog.2018.07.023
- Bloomfield, R. (2023). Integrating AI within Zero Trust Architecture for Enhanced U.S. Government Cybersecurity, https://www.linkedin.com/pulse/integrating-ai-within-zero-trust-architecture-us-ryan-bloomfield-fw5ge
- Bridges, R. A., Glass-Vanderlan, T. R., Ferragut, E. M., & Laska, J. A. (2020). Towards proactive cyber defense: A survey of automated cyber response. Computers & Security, 92, 101748. https://doi.org/10.1016/j.cose.2020.101748
- Buczak, A. L., & Guven, E. (2016). A survey of data mining and machine learning methods for cyber security intrusion detection. IEEE Communications Surveys & Tutorials, 18(2), 1153–1176. https://doi.org/10.1109/COMST.2015.2494502
- Buczak, A. L., & Guven, E. (2016). A survey of data mining and machine learning methods for cyber security intrusion detection. IEEE Communications Surveys & Tutorials, 18(2), 1153–1176. https://doi.org/10.1109/COMST.2015.2494502
- Chandola, V., Banerjee, A., & Kumar, V. (2009). Anomaly detection: A survey. ACM Computing Surveys, 41(3), 1–58. https://doi.org/10.1145/1541880.1541882
- Chandramouli, R., Coyne, E., & Orebaugh, A. (2019). Continuous monitoring and risk scoring framework for Federal information systems. Journal of Cybersecurity, 5(1), tyz001. https://doi.org/10.1093/cybsec/tyz001
- Colesky, M., Hoepman, J. H., & Hillen, C. (2016). A critical analysis of privacy design strategies. Proceedings of the 2016 IEEE Security and Privacy Workshops (SPW), 33–40. https://doi.org/10.1109/SPW.2016.20
- Doshi-Velez, F., & Kim, B. (2017). Towards a rigorous science of interpretable machine learning. arXiv preprint arXiv:1702.08608. https://arxiv.org/abs/1702.08608
- Fang, X., Misra, S., Xue, G., & Yang, D. (2012). Smart grid—The new and improved power grid: A survey. IEEE Communications Surveys & Tutorials, 14(4), 944–980. https://doi.org/10.1109/SURV.2011.101911.00087
- Fernandez, E. B., & Mujica, S. (2017). A pattern language for identity management. Journal of Computer Security, 25(1), 59–99. https://doi.org/10.3233/JCS-160550
- Ghosh, S., & Chaturvedi, A. (2018). Secure and resilient critical infrastructure through software-defined networking. Journal of Network and Computer Applications, 97, 112–125. https://doi.org/10.1016/j.jnca.2017.08.003
- Grandison, T., Spanoudakis, G., & Shaikh, S. A. (2017). Policy-based security governance for cloud computing services. Future Generation Computer Systems, 76, 659–674. https://doi.org/10.1016/j.future.2016.06.025
- Greitzer, F. L., Kangas, L. J., Noonan, C. F., Brown, C. E., & Ferryman, T. A. (2012). Psychosocial modeling of insider threat risk based on behavioral and word use analysis. Information Systems Frontiers, 15(1), 49–61. https://doi.org/10.1007/s10796-012-9332-8
- Hahn, A., Ashok, A., Sridhar, S., & Govindarasu, M. (2013). Cyber-physical security testbeds: Architecture, application, and evaluation for smart grid. IEEE Transactions on Smart Grid, 4(2), 847–855. https://doi.org/10.1109/TSG.2012.2226919
- Humayed, A., Lin, J., Li, F., & Luo, B. (2017). Cyber-physical systems security—A survey. IEEE Internet of Things Journal, 4(6), 1802–1831. https://doi.org/10.1109/JIOT.2017.2703172
- Humayed, A., Lin, J., Li, F., & Luo, B. (2017). Cyber-physical systems security—A survey. IEEE Internet of Things Journal, 4(6), 1802–1831. https://doi.org/10.1109/JIOT.2017.2703172
- Ihimoyan, M. K., Enyejo, J. O. & Ali, E. O. (2022). Monetary Policy and Inflation Dynamics in Nigeria, Evaluating the Role of Interest Rates and Fiscal Coordination for Economic Stability. International Journal of Scientific Research in Science and Technology. Online ISSN: 2395-602X. Volume 9, Issue 6. doi : https://doi.org/10.32628/IJSRST2215454
- Imoh, P. O. (2023). Impact of Gut Microbiota Modulation on Autism Related Behavioral Outcomes via Metabolomic and Microbiome-Targeted Therapies International Journal of Scientific Research and Modern Technology (IJSRMT) Volume 2, Issue 8, 2023 DOI: https://doi.org/10.38124/ijsrmt.v2i8.494
- Johnson, C., Badger, L., Waltermire, D., Snyder, J., & Skorupka, C. (2016). Guide to cybersecurity risk management. NIST Special Publication 800-30 Revision 1, National Institute of Standards and Technology. https://doi.org/10.6028/NIST.SP.800-30r1
- Kayes, A. S. M., Kalaria, R., Sarker, I. H., Islam, M. S., Watters, P. A., Ng, A., ... & Kumara, I. (2020). A survey of context-aware access control mechanisms for cloud and fog networks: Taxonomy and open research issues. Sensors, 20(9), 2464.
- Khurana, H., Hadley, M., Lu, N., & Frincke, D. A. (2010). Smart-grid security issues. IEEE Security & Privacy, 8(1), 81–85. https://doi.org/10.1109/MSP.2010.49
- Kimani, K., Oduol, V., & Langat, K. (2019). Cyber security challenges for IoT-based smart grid networks. International Journal of Critical Infrastructure Protection, 25, 124–133. https://doi.org/10.1016/j.ijcip.2019.03.001
- Kindervag, J., & Burbank, M. (2021). The evolution of Zero Trust: Architecting for cybersecurity resilience. Journal of Cybersecurity and Privacy, 1(1), 45–61. https://doi.org/10.3390/jcp1010004
- Knowles, W., Prince, D., Hutchison, D., Disso, J. F. P., & Jones, K. (2015). A survey of cyber security management in industrial control systems. International Journal of Critical Infrastructure Protection, 9, 52–80. https://doi.org/10.1016/j.ijcip.2015.02.002
- Krotofil, M., & Larsen, J. (2015). Rocking the pocket book: Hacking chemical plants for competition and extortion. Black Hat USA, 1–18. https://www.blackhat.com/docs/us-15/materials/us-15-Krotofil-Rocking-The-Pocket-Book-Hacking-Chemical-Plants-For-Competition-And-Extortion-wp.pdf
- Liao, W. (2018). Security and Privacy of Cyber-physical Systems. Case Western Reserve University.
- Liu, C., Liu, C., & Wang, Y. (2019). Cybersecurity and privacy issues in smart grids. IEEE Communications Surveys & Tutorials, 21(1), 998–1010. https://doi.org/10.1109/COMST.2018.2868531
- Matheu-García, S. N., Garcia, M. D., & Jacob, E. (2019). Enhancing ICS cybersecurity with network segmentation policies. Computers & Security, 87, 101589. https://doi.org/10.1016/j.cose.2019.101589
- Moreno Escobar, J. J., Morales Matamoros, O., Tejeida Padilla, R., Lina Reyes, I., & Quintana Espinosa, H. (2021). A comprehensive review on smart grids: Challenges and opportunities. Sensors, 21(21), 6978.
- Ononiwu, M., Azonuche, T. I., & Enyejo, J. O. (2023). Exploring Influencer Marketing Among Women Entrepreneurs using Encrypted CRM Analytics and Adaptive Progressive Web App Development. International Journal of Scientific Research and Modern Technology, 2(6), 1–13. https://doi.org/10.38124/ijsrmt.v2i6.562
- Ononiwu, M., Azonuche, T. I., Imoh, P. O. & Enyejo, J. O. (2023). Exploring SAFe Framework Adoption for Autism-Centered Remote Engineering with Secure CI/CD and Containerized Microservices Deployment International Journal of Scientific Research in Science and Technology Volume 10, Issue 6 doi : https://doi.org/10.32628/IJSRST
- Ononiwu, M., Azonuche, T. I., Okoh, O. F., & Enyejo, J. O. (2023). AI-Driven Predictive Analytics for Customer Retention in E-Commerce Platforms using Real-Time Behavioral Tracking. International Journal of Scientific Research and Modern Technology, 2(8), 17–31. https://doi.org/10.38124/ijsrmt.v2i8.561
- Ononiwu, M., Azonuche, T. I., Okoh, O. F.. & Enyejo, J. O. (2023). Machine Learning Approaches for Fraud Detection and Risk Assessment in Mobile Banking Applications and Fintech Solutions International Journal of Scientific Research in Science, Engineering and Technology Volume 10, Issue 4 doi : https://doi.org/10.32628/IJSRSET
- Pritchard, J., & Ekelhart, A. (2020). Next-generation access control: Extending policy-based security for Zero Trust architectures. Computers & Security, 96, 101928. https://doi.org/10.1016/j.cose.2020.101928
- Rose, S., Borchert, O., Mitchell, S., & Connelly, S. (2020). Zero Trust Architecture. NIST Special Publication 800-207. National Institute of Standards and Technology. https://doi.org/10.6028/NIST.SP.800-207
- Sangkatsanee, P., Wattanapongsakorn, N., & Charnsripinyo, C. (2011). Practical real-time intrusion detection using machine learning approaches. Computer Communications, 34(18), 2227–2235. https://doi.org/10.1016/j.comcom.2011.06.024
- Schuett, J., & Santillan, V. (2021). Regulatory fragmentation and cybersecurity risk in the energy sector. Energy Policy, 156, 112435. https://doi.org/10.1016/j.enpol.2021.112435
- Scott-Hayward, S., Natarajan, S., & Sezer, S. (2016). A survey of security in software-defined networks. IEEE Communications Surveys & Tutorials, 18(1), 623–654. https://doi.org/10.1109/COMST.2015.2453114
- Shon, T., & Moon, J. (2007). A hybrid machine learning approach to network anomaly detection. Information Sciences, 177(18), 3799–3821. https://doi.org/10.1016/j.ins.2007.03.025
- Sommer, R., & Paxson, V. (2010). Outside the closed world: On using machine learning for network intrusion detection. IEEE Symposium on Security and Privacy, 2010, 305–316. https://doi.org/10.1109/SP.2010.25
- Sulaiman, A., Nagu, B., Kaur, G., Karuppaiah, P., Alshahrani, H., Reshan, M. S. A., ... & Shaikh, A. (2023). Artificial intelligence-based secured power grid protocol for smart city. Sensors, 23(19), 8016.
- Tankard, C. (2011). Advanced persistent threats and how to monitor and deter them. Network Security, 2011(8), 16–19. https://doi.org/10.1016/S1353-4858(11)70086-1
- Yan, Z., Zhang, P., & Vasilakos, A. V. (2014). A survey on trust management for Internet of Things. Journal of Network and Computer Applications, 42, 120–134. https://doi.org/10.1016/j.jnca.2014.01.014
- Yetushenko, A. (N.D). ICS Cybersecurity: Addressing the Unique Challenges of Industrial Networks, https://www.salvador-tech.com/post/ics-cybersecurity-addressing-the-unique-challenges-of-industrial-networks
Downloads
Published
Issue
Section
License
Copyright (c) IJSRCSEIT

This work is licensed under a Creative Commons Attribution 4.0 International License.