Behavioral Biometrics and Machine Learning Models for Insider Threat Prediction : A Conceptual Framework

Authors

  • Jeanette Uddoh  Independent Researcher, Texas USA
  • Daniel Ajiga  Independent Researcher, Mississippi, USA
  • Babawale Patrick Okare  Ceridian (Dayforce) Toronto, Canada
  • Tope David Aduloju  Toju Africa, Nigeria

Keywords:

Insider Threat Detection, Behavioral Biometrics, Machine Learning Models, Keystroke Dynamics, Anomaly Detection, Cybersecurity Framework

Abstract

Insider threats pose a significant challenge to organizational cybersecurity, often eluding traditional security measures due to their origin within trusted entities. The advent of behavioral biometrics capturing unique patterns in user interactions such as keystroke dynamics, mouse movements, and navigation behaviors offers a promising avenue for detecting such threats. When combined with advanced machine learning (ML) techniques, these behavioral indicators can enhance the prediction and prevention of insider threats. This paper presents a conceptual framework that integrates behavioral biometrics with machine learning models to predict insider threats effectively. The framework encompasses the collection of behavioral data, feature extraction, model training, and threat prediction, emphasizing the importance of real-time analysis and adaptability to evolving user behaviors. By leveraging supervised and unsupervised ML algorithms, the framework aims to identify deviations from established behavioral baselines, signaling potential insider threats. The proposed framework addresses challenges such as data privacy concerns, the need for continuous learning to accommodate behavioral changes, and the mitigation of false positives. Through this integration, organizations can proactively detect and respond to insider threats, enhancing their overall security posture. This conceptual framework serves as a foundation for future empirical studies and the development of robust insider threat detection systems.

References

  1. J. M. Rugina, “Trust Amidst Threats: A Defender’s Approach to Navigating the Cybersecurity Dilemma,” J. Econ. Polit. Sci., vol. 3, no. 2, Art. no. 2, Dec. 2023.
  2. K. Mitsarakis, “Contemporary Cyber Threats to Critical Infrastructures: Management and Counter- measures”.
  3. D. Dave, G. Sawhney, P. Aggarwal, N. Silswal, and D. Khut, “The New Frontier of Cybersecurity: Emerging Threats and Innovations,” in 2023 29th International Conference on Telecommunications (ICT), Nov. 2023, pp. 1–6. doi: 10.1109/ICT60153.2023.10374044.
  4. S. Shafique and F. Batool, “A Comprehensive Study: Computer-generated Security Challenges and Initial Trends,” vol. 27, no. 2, Art. no. 2, Jun. 2022.
  5. “(PDF) The Human Element in Cybersecurity - Bridging the Gap Between Technology and Human Behaviour.” Accessed: May 22, 2025. [Online]. Available: https://www.researchgate.net/publication/380270220_The_Human_Element_in_Cybersecurity_-_Bridging_the_Gap_Between_Technology_and_Human_Behaviour?enrichId=rgreq-cbbc0381ce024b2291fa171fcdf4f3a1-XXX&enrichSource=Y292ZXJQYWdlOzM4MDI3MDIyMDtBUzoxMTQzMTI4MTI0MDE0ODk3MkAxNzE0NjQ2ODYwMjQx&el=1_x_3&_esc=publicationCoverPdf
  6. “Insider Threat: A Case Study, Recognizing the Early Warnings Signs by Humans - ProQuest.” Accessed: May 22, 2025. [Online]. Available: https://www.proquest.com/openview/98c6e9d26e7d9f366a3258ee46415a8f/1?cbl=18750&diss=y&pq-origsite=gscholar
  7. D. A. S. George, A. S. H. George, and D. T. Baskar, “Digitally Immune Systems: Building Robust Defences in the Age of Cyber Threats,” Partn. Univers. Int. Innov. J., vol. 1, no. 4, Art. no. 4, Aug. 2023, doi: 10.5281/zenodo.8274514.
  8. M. J. Khan, “Zero trust architecture: Redefining network security paradigms in the digital age,” World J. Adv. Res. Rev., vol. 19, no. 3, pp. 105–116, 2023, doi: 10.30574/wjarr.2023.19.3.1785.
  9. T. O. Abrahams, S. K. Ewuga, S. Kaggwa, P. U. Uwaoma, A. O. Hassan, and S. O. Dawodu, “Review of strategic alignment: Accounting and cybersecurity for data confidentiality and financial security,” World J. Adv. Res. Rev., vol. 20, no. 3, pp. 1743–1756, 2023, doi: 10.30574/wjarr.2023.20.3.2691.
  10. “Advanced Methods to Detect Intricate Cybersecurity Exploits: An Exploratory Qualitative Inquiry - ProQuest.” Accessed: May 22, 2025. [Online]. Available: https://www.proquest.com/openview/55c76d511c05cdc2da6406a0479384d2/1?cbl=18750&diss=y&pq-origsite=gscholar
  11. N. Saxena, E. Hayes, E. Bertino, P. Ojo, K.-K. R. Choo, and P. Burnap, “Impact and Key Challenges of Insider Threats on Organizations and Critical Businesses,” Electronics, vol. 9, no. 9, Art. no. 9, Sep. 2020, doi: 10.3390/electronics9091460.
  12. P. S. Rao, T. G. Krishna, and V. S. S. R. Muramalla, “Next-gen Cybersecurity for Securing Towards Navigating the Future Guardians of the Digital Realm,” Nov. 10, 2023, Social Science Research Network, Rochester, NY: 4629596. Accessed: May 22, 2025. [Online]. Available: https://papers.ssrn.com/abstract=4629596
  13. “(PDF) Defending the Digital Horizon: Artificial Intelligence in Cybersecurity Warfare,” ResearchGate. Accessed: May 22, 2025. [Online]. Available: https://www.researchgate.net/publication/386732910_Defending_the_Digital_Horizon_Artificial_Intelligence_in_Cybersecurity_Warfare
  14. “Cybersecurity Audits for Emerging and Existing Cutting Edge Technologies.” Accessed: May 22, 2025. [Online]. Available: https://ieeexplore.ieee.org/abstract/document/10444536
  15. D. Nyangoma, E. M. Adaga, N. J. Sam-Bulya, and G. O. Achumie, “Integrating Sustainability Principles into Agribusiness Operations: A Strategic Framework for Environmental and Economic Viability,” Int. J. Manag. Organ. Res., vol. 2, no. 1, pp. 288–295, 2023, doi: 10.54660/IJMOR.2023.2.1.288-295.
  16. D. Beardall, “Unveiling the Digital Shadows: Cybersecurity and the Art of Digital Forensics,” Cyber Oper. Resil. Program Grad. Proj., Jul. 2023, [Online]. Available: https://scholarworks.boisestate.edu/cyber_gradproj/5
  17. E. D. Balogun, K. O. Ogunsola, and A. S. Ogunmokun, “Developing an Advanced Predictive Model for Financial Planning and Analysis Using Machine Learning,” vol. 5, no. 11, 2022.
  18. E. C. Chukwuma-Eke, O. Y. Ogunsola, and N. J. Isibor, “A Conceptual Approach to Cost Forecasting and Financial Planning in Complex Oil and Gas Projects,” Int. J. Multidiscip. Res. Growth Eval., vol. 3, no. 1, pp. 819–833, 2022, doi: 10.54660/.IJMRGE.2022.3.1.819-833.
  19. E. C. Chukwuma-Eke, O. Y. Ogunsola, and N. J. Isibor, “A Conceptual Framework for Financial Optimization and Budget Management in Large-Scale Energy Projects,” Int. J. Multidiscip. Res. Growth Eval., vol. 2, no. 1, pp. 823–834, 2021, doi: 10.54660/.IJMRGE.2021.2.1.823-834.
  20. “Innovative trading strategies for optimizing profitability and reducing risk in global oil and gas markets | Journal of Advance Multidisciplinary Research.” [Online]. Available: https://synstojournals.com/multi/article/view/142
  21. S. Rangaraju, “AI SENTRY: REINVENTING CYBERSECURITY THROUGH INTELLIGENT THREAT DETECTION,” Int. J. Sci. Eng., vol. 9, no. 3, Art. no. 3, Dec. 2023, doi: 10.53555/ephijse.v9i3.211.
  22. A. N. Lone, S. Mustajab, and M. Alam, “A comprehensive study on cybersecurity challenges and opportunities in the IoT world”, doi: 10.1002/spy2.318.
  23. “Security, Privacy, and Usability in Continuous Authentication: A Survey.” [Online]. Available: https://www.mdpi.com/1424-8220/21/17/5967
  24. K. Krawiecka, “Leveraging the heterogeneity of the internet of things devices to improve the security of smart environments,” http://purl.org/dc/dcmitype/Text, University of Oxford, 2022. [Online]. Available: https://ora.ox.ac.uk/objects/uuid:6346188c-4d60-4001-ae58-b8ae3caea3d9
  25. B. S. Adelusi, D. Osamika, M. C. Kelvin-Agwu, A. Y. Mustapha, and N. Ikhalea, “A Deep Learning Approach to Predicting Diabetes Mellitus Using Electronic Health Records,” J. Front. Multidiscip. Res., vol. 3, no. 1, pp. 47–56, 2022, doi: 10.54660/.IJFMR.2022.3.1.47-56.
  26. Paris Descartes University, 45 Rue Des Saints-Pères, Paris, France, C. Khalil, and S. Khalil, “A Governance Framework for Adopting Agile Methodologies,” Int. J. E-Educ. E-Bus. E-Manag. E-Learn., vol. 6, no. 2, pp. 111–119, 2016, doi: 10.17706/ijeeee.2016.6.2.111-119.
  27. A. Abisoye and J. I. Akerele, “A High-Impact Data-Driven Decision-Making Model for Integrating Cutting-Edge Cybersecurity Strategies into Public Policy, Governance, and Organizational Frameworks,” Int. J. Multidiscip. Res. Growth Eval., vol. 2, no. 1, pp. 623–637, 2021, doi: 10.54660/.IJMRGE.2021.2.1.623-637.
  28. B. I. Adekunle, E. C. Chukwuma-Eke, E. D. Balogun, and K. O. Ogunsola, “A Predictive Modeling Approach to Optimizing Business Operations: A Case Study on Reducing Operational Inefficiencies through Machine Learning,” Int. J. Multidiscip. Res. Growth Eval., vol. 2, no. 1, pp. 791–799, 2021, doi: 10.54660/.IJMRGE.2021.2.1.791-799.
  29. G. O. Babatunde, O. O. Amoo, C. Ike, and A. B. Ige, “A Penetration Testing and Security Controls Framework to Mitigate Cybersecurity Gaps in North American Enterprises,” vol. 5, no. 12, 2022.
  30. F. C. Okolo, E. A. Etukudoh, O. Ogunwole, G. O. Osho, and J. O. Basiru, “Advances in Cyber-Physical Resilience of Transportation Infrastructure in Emerging Economies and Coastal Regions,” Int. J. Multidiscip. Res. Growth Eval., vol. 4, no. 1, pp. 1188–1198, 2023, doi: 10.54660/.IJMRGE.2023.4.1.1188-1198.
  31. M. Janssen and H. Van Der Voort, “Adaptive governance: Towards a stable, accountable and responsive government,” Gov. Inf. Q., vol. 33, no. 1, pp. 1–5, Jan. 2016, doi: 10.1016/j.giq.2016.02.003.
  32. “A Systematic Review of the Literature on Digital Transformation: Insights and Implications for Strategy and Organizational Change - Hanelt - 2021 - Journal of Management Studies - Wiley Online Library.” [Online]. Available: https://onlinelibrary.wiley.com/doi/full/10.1111/joms.12639
  33. F. E. Adikwu, C. O. Ozobu, O. Odujobi, F. O. Onyekwe, and E. O. Nwulu, “Advances in EHS Compliance: A Conceptual Model for Standardizing Health, Safety, and Hygiene Programs Across Multinational Corporations,” vol. 7, no. 5, 2023.
  34. A. H. Adepoju, B. Austin-Gabriel, O. Hamza, and A. Collins, “Advancing Monitoring and Alert Systems: A Proactive Approach to Improving Reliability in Complex Data Ecosystems,” vol. 5, no. 11, 2022.
  35. M. Ruotsala, “Agile and Lean processes on an IoT development”.
  36. P. V. Zhukov, A. A. Silvanskiy, K. Y. Mukhin, and O. L. Domnina, “Agile Supply Chain Management in Multinational Corporations: Opportunities and Barriers,” vol. 8, no. 3, 2019.
  37. D. Cohen, M. Lindvall, and P. Costa, “An Introduction to Agile Methods,” in Advances in Computers, vol. 62, Elsevier, 2004, pp. 1–66. doi: 10.1016/S0065-2458(03)62001-2.
  38. O. J. Esan, O. T. Uzozie, O. Onaghinor, G. O. Osho, and J. O. Omisola, “Leading with Lean Six Sigma and RPA in High-Volume Distribution: A Comprehensive Framework for Operational Excellence,” Int. J. Multidiscip. Res. Growth Eval., vol. 4, no. 1, pp. 1158–1164, 2023, doi: 10.54660/.IJMRGE.2023.4.1.1158-1164.
  39. F. C. Okolo, E. A. Etukudoh, O. Ogunwole, G. O. Osho, and J. O. Basiru, “Strategic Approaches to Building Digital Workforce Capacity for Cybersecure Transportation Operations and Policy Compliance,” Int. J. Multidiscip. Res. Growth Eval., pp. 1209–1218, 2023, doi: 10.54660/.IJMRGE.2023.4.1.1209-1218.
  40. “Exploring the Paradox of Managerial Ambidexterity in Exploitation Versus Exploration - ProQuest.” [Online]. Available: https://www.proquest.com/openview/1a5679f2f8f83578a2af6f80891037a1/1?cbl=2026366&diss=y&pq-origsite=gscholar
  41. productioneditor, “Blockchain-enabled asset management: Opportunities, risks and global implications,” Comprehensive Research and Reviews in Multidisciplinary Studies. [Online]. Available: https://crrjournals.com/crrms/content/blockchain-enabled-asset-management-opportunities-risks-and-global-implications
  42. G. Westerman, D. Bonnet, and A. McAfee, Leading Digital: Turning Technology Into Business Transformation. Harvard Business Press, 2014.
  43. “Large-Scale Agile | SpringerLink.” [Online]. Available: https://link.springer.com/chapter/10.1007/978-3-031-05469-3_18
  44. D. C. Ayodeji, I. Oyeyipo, V. Attipoe, N. J. Isibor, and B. A. Mayienga, “Analyzing the Challenges and Opportunities of Integrating Cryptocurrencies into Regulated Financial Markets,” Int. J. Multidiscip. Res. Growth Eval., vol. 4, no. 6, pp. 1190–1196, 2023, doi: 10.54660/.IJMRGE.2023.4.6.1190-1196.
  45. N. Perkin and P. Abraham, Building the agile business through digital transformation, 1st Edition. London ; New York, NY: Kogan Page Limited, 2017.
  46. B. Fitzgerald and K.-J. Stol, “Continuous software engineering and beyond: trends and challenges,” in Proceedings of the 1st International Workshop on Rapid Continuous Software Engineering, in RCoSE 2014. New York, NY, USA: Association for Computing Machinery, Jun. 2014, pp. 1–9. doi: 10.1145/2593812.2593813.
  47. A. H. Adepoju, A. Eweje, A. Collins, and O. Hamza, “Developing strategic roadmaps for data-driven organizations: A model for aligning projects with business goals,” Int. J. Multidiscip. Res. Growth Eval., vol. 4, no. 6, pp. 1128–1140, 2023, doi: 10.54660/.IJMRGE.2023.4.6.1128-1140.
  48. E. C. Chukwuma-Eke, O. Y. Ogunsola, and N. J. Isibor, “Designing a Robust Cost Allocation Framework for Energy Corporations Using SAP for Improved Financial Performance,” Int. J. Multidiscip. Res. Growth Eval., vol. 2, no. 1, pp. 809–822, 2021, doi: 10.54660/.IJMRGE.2021.2.1.809-822.
  49. M. Pop, “Agile Virtualization – The importance of Scrum frame- work in creating synergies in global organizations”.
  50. E. C. Chukwuma-Eke, O. Y. Ogunsola, and N. J. Isibor, “Developing an Integrated Framework for SAP-Based Cost Control and Financial Reporting in Energy Companies,” Int. J. Multidiscip. Res. Growth Eval., vol. 3, no. 1, pp. 805–818, 2022, doi: 10.54660/.IJMRGE.2022.3.1.805-818.
  51. Y. G. Hassan, A. Collins, G. O. Babatunde, A. A. Alabi, and S. D. Mustapha, “Blockchain and zero-trust identity management system for smart cities and IoT networks,” Int. J. Multidiscip. Res. Growth Eval., vol. 4, no. 1, pp. 704–709, 2023, doi: 10.54660/.IJMRGE.2023.4.1.704-709.
  52. O. Hamza, A. Collins, A. Eweje, and G. O. Babatunde, “Agile-DevOps Synergy for Salesforce CRM Deployment: Bridging Customer Relationship Management with Network Automation,” Int. J. Multidiscip. Res. Growth Eval., vol. 4, no. 1, pp. 668–681, 2023, doi: 10.54660/.IJMRGE.2023.4.1.668-681.
  53. “C. S. Holling (1973) (Chapter 32) - Foundations of Socio-Environmental Research.” [Online]. Available: https://www.cambridge.org/core/books/abs/foundations-of-socioenvironmental-research/c-s-holling-1973/93347024CC60F4C3130F936513402FE3
  54. “International Journal of Multidisciplinary Research and Growth Evaluation www.allmultidisciplinaryjournal.com”.

Downloads

Published

2023-07-24

Issue

Section

Research Articles

How to Cite

[1]
Jeanette Uddoh, Daniel Ajiga, Babawale Patrick Okare, Tope David Aduloju, " Behavioral Biometrics and Machine Learning Models for Insider Threat Prediction : A Conceptual Framework " International Journal of Scientific Research in Computer Science, Engineering and Information Technology(IJSRCSEIT), ISSN : 2456-3307, Volume 9, Issue 4, pp.745-759, July-August-2023.