Utilizing Deep Learning Techniques for Text and Image Capturing Summarization in Information Retrievals
DOI:
https://doi.org/10.32628/CSEIT2390218Keywords:
Semantics, Information retrieval, Feature extraction, Data mining, Deep learning, Task analysis.Abstract
In this paper, a novel information retrieval and text summarization model based on deep learning (DL) is introduced. The model comprises three primary stages, including information retrieval, template generation, and text summarization. The initial step involves utilizing a bidirectional long short term memory (BiLSTM) technique to retrieve textual data. This approach considers each word in a sentence, extracts relevant information, and converts it into a semantic vector.
References
- D. Jain, M. D. Borah, and A. Biswas,”Fine-tuning textrank for legal document summarization: A Bayesian optimization based approach”, Proc. Forum Inf. Retr. Eval., Hyderabad India, Dec. 2020, pp. 41_48.
- H. Oufaida, O.Nouali, and P. Blache,Minimumredundancy and max- imum relevance for single and multi-document Arabic text summariza-tion, J. King Saud Uni v.-Comput. Inf. Sci., vol. 26, no. 4, pp. 450_461, Dec. 2014.
- H. Yamada, S. Teufel, and T. Tokunaga, “Designing an annotation scheme for summarizing Japanese judgment documents,” Proc. 9th Int. Conf. Knowl. Syst. Eng. (KSE), Oct. 2017, pp. 275_280.
- J. Chen and H. Zhuge, “Abstractive text-image summarization using multi-modal attentional hierarchical RNN,” Proc. Conf. Empirical Methods Natural Lang. Process., Brussels, Belgium, 2018, pp. 4046_4056
- K. Agrawal, “Legal case summarization: An application for text sum- marization,” Proc. Int. Conf. Comput. Commun. Informat. (ICCCI), Jan. 2020, pp. 1_6.
- K. Merchant and Y. Pande,”NLP based latent semantic analysis for legal text summarization,” Proc. Int. Conf. Adv. Comput., Commun. Informat. (ICACCI), Bengaluru, India, Sep. 2018, pp. 1803_1807, doi: 10.1109/ICACCI.2018.8554831.
- M. Farsi, D. Hosahalli, B. Manjunatha, I. Gad, E. Atlam, A. Ahmed, G. Elmarhomy, M. Elmarhoumy, and O. Ghoneim, “Parallel genetic algo-rithms for optimizing the SARIMA model for better forecasting of the NCDC weather data,” Alexandria Eng. J., vol. 60, no. 1, pp. 1299_1316, 2021.
- R. K. Venkatesh, “Legal documents clustering and summarization using hierarchical latent Dirichlet allocation,”IJ-AI, vol. 2, no. 1, pp. 27_35, Mar. 2013.
- S. Bhattasali, J. Cytryn, E. Feldman, and J. Park, “Automatic identi_cation of rhetorical questions,” Proc. 53rd Annu. Meeting Assoc. Comput. Linguistics, vol. 2, Beijing, China, 2015, pp. 743_749.
- Z. Malki, E. Atlam, G. Dagnew, A. Alzighaibi, E. Ghada, and I. Gad, “Bidirectional residual LSTM-based human activity recognition,”Com- put. Inf. Sci., vol. 13, no. 3, pp. 1_40, 2020.
Downloads
Published
Issue
Section
License
Copyright (c) IJSRCSEIT

This work is licensed under a Creative Commons Attribution 4.0 International License.