In Generative AI : Zero-Shot and Few-Shot
DOI:
https://doi.org/10.32628/CSEIT2390668Keywords:
Generative AI, Zero-Shot Learning, Few-Shot Learning, Data Scarcity, Model Generalization, Transfer Learning, Meta-Learning, Advanced Architectures, Transformers, Real-Time ApplicationsAbstract
Generative AI has become a change-maker in many fields, using different text, image, and voice generation modes. One of the profound sub-areas within this domain is the optimum utilization of learning systems with minimal information using zero- and few-shot learning. Zero-shot learning lets models operate on novel classes or tasks for which it has no training sample, while few-shot learning allows models to learn with initial samples. Such approaches are useful when it is difficult or expensive to obtain information, which suggests a technique for providing a direction for developing accurate AI models when data are lacking. This paper explains the background, application, and challenges of generative AI models that use zero-shot/one-shot learning, outlining how these techniques help set new paradigms and raise innovative horizons for AI systems.
References
- Bartunov, S., & Vetrov, D. (2018, March). Few-shot generative modeling with generative matching networks. In International Conference on Artificial Intelligence and Statistics (pp. 670-678). PMLR. http://proceedings.mlr.press/v84/bartunov18a/bartunov18a.pdf
- Jangampeta, S., Mallreddy, S.R., & Padamati, J.R. (2021). Anomaly Detection for Data Security in SIEM: Identifying Malicious Activity in Security Logs and User Sessions. 10(12), 295-298
- Jangampeta, S., Mallreddy, S. R., & Padamati, J. R. (2021). Data Security: Safeguarding the Digital Lifeline in an Era of Growing Threats. International Journal for Innovative Engineering and Management Research, 10(4), 630-632.
- Sukender Reddy Mallreddy(2020).Cloud Data Security: Identifying Challenges and Implementing Solutions.JournalforEducators,TeachersandTrainers,Vol.11(1).96 -102.
- Vasa, Y. (2021). Robustness and adversarial attacks on generative models. International Journal for Research Publication and Seminar, 12(3), 462–471. https://doi.org/10.36676/jrps.v12.i3.1537
- Vasa, Y. (2021). Quantum Information Technologies in cybersecurity: Developing unbreakable encryption for continuous integration environments. International Journal for Research Publication and Seminar, 12(2), 482–490. https://doi.org/10.36676/jrps.v12.i2.1539
- Vasa, Y. (2021). Develop Explainable AI (XAI) Solutions For Data Engineers. NVEO - Natural Volatiles & Essential Oils, 8(3), 425–432. https://doi.org/https://doi.org/10.53555/nveo.v8i3.5769
- Singirikonda, P., Jaini, S., & Vasa, Y. (2021). Develop Solutions To Detect And Mitigate Data Quality Issues In ML Models. NVEO - Natural Volatiles & Essential Oils, 8(4), 16968–16973. https://doi.org/https://doi.org/10.53555/nveo.v8i4.5771
- Vasa, Y., Jaini, S., & Singirikonda, P. (2021). Design Scalable Data Pipelines For Ai Applications. NVEO - Natural Volatiles & Essential Oils, 8(1), 215–221. https://doi.org/https://doi.org/10.53555/nveo.v8i1.5772
- Katikireddi, P. M., Singirikonda, P., & Vasa, Y. (2021). Revolutionizing DEVOPS with Quantum Computing: Accelerating CI/CD pipelines through Advanced Computational Techniques. Innovative Research Thoughts, 7(2), 97–103. https://doi.org/10.36676/irt.v7.i2.1482
- Kilaru, N. B., Cheemakurthi, S. K. M., & Gunnam, V. (n.d.). Advanced Anomaly Detection In Banking: Detecting Emerging Threats Using Siem. International Journal of Computer Science and Mechatronics, 7(4), 28–33.
- Kilaru, N. B., Cheemakurthi, S. K. M., & Gunnam, V. (2021). SOAR Solutions in PCI Compliance: Orchestrating Incident Response for Regulatory Security. ESP Journal of Engineering & Technology Advancements, 1(2), 78–84. https://doi.org/10.56472/25832646/ESP-V1I2P111
- Gunnam, V., & Kilaru, N. B. (2021). Securing Pci Data: Cloud Security Best Practices And Innovations. NVEO-NATURAL VOLATILES & ESSENTIAL OILS Journal| NVEO.
- Kilaru, N. B., & Cheemakurthi, S. K. M. (2021). Techniques For Feature Engineering To Improve Ml Model Accuracy. NVEO-NATURAL VOLATILES & ESSENTIAL OILS Journal| NVEO, 194-200.
- Naresh Babu Kilaru. (2021). AUTOMATE DATA SCIENCE WORKFLOWS USING DATA ENGINEERING TECHNIQUES. International Journal for Research Publication and Seminar, 12(3), 521–530. https://doi.org/10.36676/jrps.v12.i3.1543
- Singirikonda, P., Katikireddi, P. M., & Jaini, S. (2021). Cybersecurity In Devops: Integrating Data Privacy And Ai-Powered Threat Detection For Continuous Delivery. NVEO - Natural Volatiles & Essential Oils, 8(2), 215–216. https://doi.org/https://doi.org/10.53555/nveo.v8i2.5770
- Katikireddi, P. M., Singirikonda, P., & Vasa, Y. (2021). Revolutionizing DEVOPS with Quantum Computing: Accelerating CI/CD pipelines through Advanced Computational Techniques. Innovative Research Thoughts, 7(2), 97–103. https://doi.org/10.36676/irt.v7.i2.1482
Downloads
Published
Issue
Section
License
Copyright (c) IJSRCSEIT

This work is licensed under a Creative Commons Attribution 4.0 International License.