Digital Twin-Enabled Vulnerability Assessment with Zero Trust Policy Enforcement in Smart Manufacturing Cyber-Physical System
Keywords:
Digital Twin (DT), Zero Trust Architecture (ZTA), Cyber-Physical Systems (CPS), Smart Manufacturing, Vulnerability AssessmentAbstract
The convergence of digital twin (DT) technology and zero trust architecture (ZTA) offers a transformative framework for enhancing cybersecurity and operational resilience in smart manufacturing cyber-physical systems (CPS). This review explores how DTs—virtual representations of physical assets—can simulate, monitor, and evaluate vulnerabilities across complex manufacturing networks in real time. Traditional perimeter-based defenses are increasingly ineffective in distributed and interconnected industrial environments. In response, zero trust policy enforcement—anchored in the principles of "never trust, always verify"—introduces dynamic access controls, micro-segmentation, and continuous authentication that address latent security gaps in CPS. The integration of DTs with ZTA provides contextual awareness for asset behavior, enabling predictive threat modeling, anomaly detection, and proactive security orchestration. This paper reviews recent advancements in DT-enhanced vulnerability assessment tools, zero trust policy engines, and their interplay in manufacturing systems with high cyber-physical interdependence. Emphasis is placed on identifying research gaps, evaluating system architectures, and proposing future directions for implementing resilient, secure-by-design CPS infrastructures. By systematically reviewing case studies, industrial applications, and academic frameworks, this study underscores the critical role of DT and ZTA synergy in safeguarding smart manufacturing environments against evolving cyber threats.
References
- Abiodun, K., Ogbuonyalu, U. O., Dzamefe, S., Vera, E. N., Oyinlola, A., & Igba, E. (2023). Exploring Cross-Border Digital Assets Flows and Central Bank Digital Currency Risks to Capital Markets Financial Stability. International Journal of Scientific Research and Modern Technology, 2(11), 32–45. https://doi.org/10.38124/ijsrmt.v2i11.447
- Alcaraz, C., & Lopez, J. (2022). Digital twin: A comprehensive survey of security threats. IEEE Communications Surveys & Tutorials, 24(3), 1475-1503.
- Alsmadi, I., & Xu, D. (2020). Security of cyber-physical systems using zero trust architecture. Computers & Security, 92, 101751. https://doi.org/10.1016/j.cose.2020.101751
- Alzubaidi, A., & Kalutarage, H. K. (2021). Policy-based access control for Zero Trust architecture in smart industrial systems. Computers & Security, 106, 102286. https://doi.org/10.1016/j.cose.2021.102286
- Andronie, M., Lăzăroiu, G., Ștefănescu, R., Uță, C., & Dijmărescu, I. (2021). Sustainable, smart, and sensing technologies for cyber-physical manufacturing systems: A systematic literature review. Sustainability, 13(10), 5495.
- Atalor, S. I. (2019). Federated Learning Architectures for Predicting Adverse Drug Events in Oncology Without Compromising Patient Privacy ICONIC RESEARCH AND ENGINEERING JOURNALS JUN 2019 | IRE Journals | Volume 2 Issue 12 | ISSN: 2456-8880
- Atalor, S. I., Ijiga, O. M., & Enyejo, J. O. (2023). Harnessing Quantum Molecular Simulation for Accelerated Cancer Drug Screening. International Journal of Scientific Research and Modern Technology, 2(1), 1–18. https://doi.org/10.38124/ijsrmt.v2i1.502
- Atalor, S. I., Raphael, F. O. & Enyejo, J. O. (2023). Wearable Biosensor Integration for Remote Chemotherapy Monitoring in Decentralized Cancer Care Models. International Journal of Scientific Research in Science and Technology Volume 10, Issue 3 (www.ijsrst.com) doi : https://doi.org/10.32628/IJSRST23113269
- Balta, E. C., Pease, M., Moyne, J., Barton, K., & Tilbury, D. M. (2023). Digital twin-based cyber-attack detection framework for cyber-physical manufacturing systems. IEEE Transactions on Automation Science and Engineering, 21(2), 1695-1712.
- Balta, E. C., Pease, M., Moyne, J., Barton, K., & Tilbury, D. M. (2023). Digital twin-based cyber-attack detection framework for cyber-physical manufacturing systems. IEEE Transactions on Automation Science and Engineering, 21(2), 1695-1712.
- Barricelli, B. R., Casiraghi, E., & Fogli, D. (2019). A Survey on Digital Twin: Definitions, Characteristics, Applications, and Design Implications. IEEE Access, 7, 167653–167671. https://doi.org/10.1109/ACCESS.2019.2953499
- Cunningham, C., & Pollard, J. (2017). The eight business and security benefits of zero trust. Forrester Reseach November.
- Federici, F., Martintoni, D., & Senni, V. (2023). A zero-trust architecture for remote access in industrial IoT infrastructures. Electronics, 12(3), 566.
- Fernández-Caramés, T. M., & Fraga-Lamas, P. (2020). A Review on the Application of Blockchain to the Next Generation of Cybersecure Industry 4.0 Smart Factories. IEEE Access, 7, 45201–45218. https://doi.org/10.1109/ACCESS.2019.2908780
- Fuller, A., Fan, Z., Day, C., & Barlow, C. (2020). Digital twin: Enabling technologies, challenges and open research. IEEE Access, 8, 108952–108971. https://doi.org/10.1109/ACCESS.2020.2998358
- Glaessgen, E., & Stargel, D. (2012). The digital twin paradigm for future NASA and U.S. Air Force vehicles. 53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, 1–14. https://doi.org/10.2514/6.2012-1818
- Grieves, M., & Vickers, J. (2017). Digital Twin: Mitigating Unpredictable, Undesirable Emergent Behavior in Complex Systems. In Transdisciplinary Perspectives on Complex Systems (pp. 85–113). Springer. https://doi.org/10.1007/978-3-319-38756-7_4
- He, Y., Xu, X., & Wang, L. (2021). Cybersecurity challenges for industrial cyber–physical systems: A comprehensive review. Robotics and Computer-Integrated Manufacturing, 68, 102114. https://doi.org/10.1016/j.rcim.2020.102114
- Ihimoyan, M. K., Enyejo, J. O. & Ali, E. O. (2022). Monetary Policy and Inflation Dynamics in Nigeria, Evaluating the Role of Interest Rates and Fiscal Coordination for Economic Stability. International Journal of Scientific Research in Science and Technology. Online ISSN: 2395-602X. Volume 9, Issue 6. doi : https://doi.org/10.32628/IJSRST2215454
- Imoh, P. O. (2023). Impact of Gut Microbiota Modulation on Autism Related Behavioral Outcomes via Metabolomic and Microbiome-Targeted Therapies International Journal of Scientific Research and Modern Technology (IJSRMT) Volume 2, Issue 8, 2023 DOI: https://doi.org/10.38124/ijsrmt.v2i8.494
- Koulamas, C., & Kalogeras, A. P. (2018). Cyber-Physical Systems and Digital Twins in the Industrial Internet of Things: A Review. Computer Science Review, 30, 100–112. https://doi.org/10.1016/j.cosrev.2018.10.002
- Lee, J., Bagheri, B., & Jin, C. (2016). Cyber-physical systems for predictive production systems. CIRP Annals, 65(1), 715–728. https://doi.org/10.1016/j.cirp.2016.06.001
- Leng, J., Liu, Q., Ye, S., Jing, J., Wang, Y., & Zhang, H. (2021). Digital twin-driven manufacturing cyber-physical system for parallel controlling of smart workshop. Journal of Manufacturing Systems, 58, 52–64. https://doi.org/10.1016/j.jmsy.2020.06.017
- Leng, J., Wang, D., Shen, W., Li, X., & Liu, Q. (2022). Digital twins-based smart manufacturing system design in Industry 4.0: A review. Journal of Manufacturing Systems, 62, 731–749. https://doi.org/10.1016/j.jmsy.2022.01.007
- Li, X., Peng, J., Niu, J., Wu, F., Liao, J., & Choo, K. K. R. (2017). A robust and energy efficient authentication protocol for industrial internet of things. IEEE Internet of Things Journal, 5(3), 1606-1615.
- Li, Y., Tao, Z., Wang, L., Du, B., Guo, J., & Pang, S. (2023). Digital twin-based job shop anomaly detection and dynamic scheduling. Robotics and Computer-Integrated Manufacturing, 79, 102443.
- Liu, Q., Leng, J., Yan, D., Zhang, D., Wei, L., Yu, A., ... & Chen, X. (2021). Digital twin-based designing of the configuration, motion, control, and optimization model of a flow-type smart manufacturing system. Journal of Manufacturing Systems, 58, 52-64.
- McLaughlin, S., Konstantinou, C., Wang, X., Davi, L., Sadeghi, A. R., Maniatakos, M., & Karri, R. (2016). The cybersecurity landscape in industrial control systems. Proceedings of the IEEE, 104(5), 1039-1057.
- Mutahi, D. (2023). Navigating The Delicate Balance: Privacy and Data Security In Computing, https://www.linkedin.com/pulse/navigating-delicate-balance-privacy-data-security-computing-mutahi
- Ononiwu, M., Azonuche, T. I., & Enyejo, J. O. (2023). Exploring Influencer Marketing Among Women Entrepreneurs using Encrypted CRM Analytics and Adaptive Progressive Web App Development. International Journal of Scientific Research and Modern Technology, 2(6), 1–13. https://doi.org/10.38124/ijsrmt.v2i6.562
- Ononiwu, M., Azonuche, T. I., Imoh, P. O. & Enyejo, J. O. (2023). Exploring SAFe Framework Adoption for Autism-Centered Remote Engineering with Secure CI/CD and Containerized Microservices Deployment International Journal of Scientific Research in Science and Technology Volume 10, Issue 6 doi : https://doi.org/10.32628/IJSRST
- Ononiwu, M., Azonuche, T. I., Okoh, O. F., & Enyejo, J. O. (2023). AI-Driven Predictive Analytics for Customer Retention in E-Commerce Platforms using Real-Time Behavioral Tracking. International Journal of Scientific Research and Modern Technology, 2(8), 17–31. https://doi.org/10.38124/ijsrmt.v2i8.561
- Ononiwu, M., Azonuche, T. I., Okoh, O. F.. & Enyejo, J. O. (2023). Machine Learning Approaches for Fraud Detection and Risk Assessment in Mobile Banking Applications and Fintech Solutions International Journal of Scientific Research in Science, Engineering and Technology Volume 10, Issue 4 doi : https://doi.org/10.32628/IJSRSET
- Paul, B., & Rao, M. (2022). Zero-trust model for smart manufacturing industry. Applied Sciences, 13(1), 221.
- Paul, B., & Rao, M. (2022). Zero-trust model for smart manufacturing industry. Applied Sciences, 13(1), 221.
- Qi, Q., Tao, F., Zuo, Y., Zhao, D., & Lin, Y. (2021). Digital Twin Service Towards Smart Manufacturing. Journal of Manufacturing Systems, 58, 185–195. https://doi.org/10.1016/j.jmsy.2020.06.017
- Qi, Q., Zhao, D., Liao, T. W., & Tao, F. (2018). Modeling of cyber-physical systems and digital twin based on edge computing, fog computing and cloud computing towards smart manufacturing. In International manufacturing science and engineering conference (Vol. 51357, p. V001T05A018). American Society of Mechanical Engineers.
- Ray, P. P. (2023). Web3: A comprehensive review on background, technologies, applications, zero-trust architectures, challenges and future directions. Internet of Things and Cyber-Physical Systems, 3, 213-248.
- Rose, S., Borchert, O., Mitchell, S., & Connelly, S. (2020). Zero Trust Architecture. NIST Special Publication 800-207. National Institute of Standards and Technology. https://doi.org/10.6028/NIST.SP.800-207
- Terca, K. (2022). Digital twin: Manufacturing case studies, smart factories and predictive maintenance, https://blog.3ds.com/brands/netvibes/digital-twin-manufacturing-case-studies-smart-factories-and-predictive-maintenance/
- Trakadas, P., Simoens, P., Gkonis, P., Sarakis, L., Angelopoulos, A., Ramallo-González, A. P., ... & Karkazis, P. (2020). An artificial intelligence-based collaboration approach in industrial iot manufacturing: Key concepts, architectural extensions and potential applications. Sensors, 20(19), 5480.
- Vigna, R. (2023). The Tangible Benefits of Digital Twins: A New Era of Efficiency and Optimization https://www.linkedin.com/pulse/tangible-benefits-digital-twins-new-era-efficiency-rodrigo-vigna-x0zkc
- Wang, P., Xu, N., Zhang, H., Sun, W., & Benslimane, A. (2021). Dynamic access control and trust management for blockchain-empowered IoT. IEEE Internet of Things Journal, 9(15), 12997-13009.
- Wang, Y., Su, Z., Guo, S., Dai, M., Luan, T. H., & Liu, Y. (2023). A survey on digital twins: Architecture, enabling technologies, security and privacy, and future prospects. IEEE Internet of Things Journal, 10(17), 14965-1498
- Wen, J., Gabrys, B., & Musial, K. (2022). Toward digital twin oriented modeling of complex networked systems and their dynamics: A comprehensive survey. Ieee Access, 10, 66886-66923.
- Xie, J., Ma, H., Yu, L., & Fan, X. (2021). Real-time data-driven digital twin framework for complex equipment operation and maintenance in smart manufacturing. Advanced Engineering Informatics, 47, 101230. https://doi.org/10.1016/j.aei.2020.101230
- Xu, H., Wu, J., Pan, Q., Guan, X., & Guizani, M. (2023). A survey on digital twin for industrial internet of things: Applications, technologies and tools. IEEE Communications Surveys & Tutorials, 25(4), 2569-2598.
- Xu, L. D., & Duan, L. (2020). Big Data for Cyber-Physical Systems in Industry 4.0: A Survey. Enterprise Information Systems, 14(2), 148–169. https://doi.org/10.1080/17517575.2019.1652321
- Yan, Z., Zhang, P., & Wang, Y. (2020). Dynamic trust management and adaptive access control for Zero Trust in smart industrial environments. Future Generation Computer Systems, 108, 1232–1244. https://doi.org/10.1016/j.future.2020.03.010
- Zheng, Y., Yang, S., Cheng, H., & Wang, T. (2021). Intelligent predictive maintenance strategy with digital twin for sustainable manufacturing systems. Journal of Cleaner Production, 316, 128321. https://doi.org/10.1016/j.jclepro.2021.128321
Downloads
Published
Issue
Section
License
Copyright (c) IJSRCSEIT

This work is licensed under a Creative Commons Attribution 4.0 International License.