

Copyright © 2024 The Author(s) : This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/)

International Journal of Scientific Research in Computer Science, Engineering

and Information Technology

ISSN : 2456-3307

Available Online at : www.ijsrcseit.com

doi : https://doi.org/10.32628/CSEIT241061100

595

Enabling On-Device Inference of Large Language Models :

Challenges, Techniques, and Applications
Athul Ramkumar

Arizona State University, USA

A R T I C L E I N F O

A B S T R A C T

Article History:

Accepted : 08 Nov 2024

Published: 18 Nov 2024

 This comprehensive article explores the cutting-edge techniques and challenges

associated with on-device inference of Large Language Models (LLMs), a

transformative approach that brings advanced AI capabilities directly to mobile

and edge devices. The article delves into the intricate balance between the

computational demands of LLMs and the resource constraints of mobile

hardware, presenting a detailed analysis of various strategies to overcome these

limitations. Key areas of focus include model compression techniques such as

pruning and knowledge distillation, quantization methods, and the development

of efficient model architectures. The article also examines the role of specialized

hardware accelerators, including Neural Processing Units (NPUs), FPGAs, and

ASICs, in enhancing on-device performance. Additionally, the article addresses

critical aspects of memory management and optimization strategies crucial for

efficient LLM deployment. Through a rigorous evaluation of performance

Publication Issue

Volume 10, Issue 6

November-December-2024

Page Number

595-604

Volume 10, Issue 6, November-December-2024 | http://ijsrcseit.com

Athul Ramkumar Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol., November-December-2024, 10 (6) : 595-604

596

metrics, the article offers insights into the trade-offs between model size,

inference speed, and accuracy. It further explores diverse applications and use

cases, from real-time language translation to privacy-preserving text analysis,

highlighting the transformative potential of on-device LLM inference. The

article concludes with an examination of ongoing challenges and future research

directions, including improving energy efficiency, enhancing model

adaptability, and addressing privacy and security concerns. This comprehensive

article provides researchers, developers, and industry professionals with a

thorough understanding of the current state and future prospects of on-device

LLM inference, underlining its significance in shaping the next generation of AI-

powered mobile and IoT applications.

Keywords : On-device inference, Large Language Models (LLMs), mobile AI,

edge AI, model compression, pruning, knowledge distillation, quantization,

efficient model architectures, Neural Processing Units (NPUs), FPGAs, ASICs

I. Introduction

On-device inference of Large Language Models (LLMs)

represents a significant advancement in artificial

intelligence, enabling real-time, privacy-preserving

applications without reliance on cloud infrastructure.

This paradigm shift addresses growing concerns about

data privacy and latency in AI-powered applications,

while also reducing dependency on network

connectivity. However, the deployment of LLMs on

mobile and edge devices presents formidable

challenges due to their substantial computational and

memory requirements [1]. These models, which have

demonstrated remarkable capabilities in natural

language understanding and generation, typically

contain billions of parameters and demand significant

computational resources. The constraints of mobile

and edge devices, including limited processing power,

memory capacity, and energy resources, necessitate

innovative approaches to make on-device LLM

inference feasible. This article explores the cutting-

edge techniques and technologies that are bridging the

gap between the immense potential of LLMs and the

resource limitations of mobile and edge devices, paving

the way for a new era of intelligent, responsive, and

privacy-conscious AI applications.

II. Background

A. Overview of Large Language Models

Large Language Models (LLMs) are advanced artificial

intelligence systems trained on vast amounts of text

data to understand and generate human-like language.

These models, based on transformer architectures,

have revolutionized natural language processing tasks

such as text generation, translation, and question-

answering. LLMs like GPT-3, BERT, and their variants

have demonstrated remarkable abilities in

understanding context, generating coherent text, and

even exhibiting some degree of reasoning. The scale of

these models has grown exponentially, with some

containing hundreds of billions of parameters,

allowing them to capture intricate patterns and

nuances in language.

B. Cloud-based vs. on-device inference

Traditionally, LLMs have been deployed in cloud

environments due to their substantial computational

requirements. Cloud-based inference offers advantages

such as unlimited computational resources, easy

scalability, and centralized model updates. However, it

also introduces latency issues, privacy concerns, and

dependence on network connectivity. On-device

inference, in contrast, processes data locally on the

Volume 10, Issue 6, November-December-2024 | http://ijsrcseit.com

Athul Ramkumar Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol., November-December-2024, 10 (6) : 595-604

597

user's device, offering real-time responses, enhanced

privacy, and offline functionality. This approach

eliminates the need to transmit sensitive data to remote

servers, reducing potential security risks and

addressing data privacy regulations [2].

C. Current limitations of mobile and edge devices

Despite the benefits of on-device inference, mobile and

edge devices face significant constraints in deploying

LLMs. These limitations include:

1. Computational Power: Mobile processors, while

increasingly powerful, still lag behind high-

performance server CPUs and GPUs in handling the

complex matrix operations required by LLMs.

2. Memory Constraints: LLMs often require gigabytes

of memory, far exceeding the available RAM in

most mobile devices.

3. Energy Efficiency: Running computationally

intensive models can rapidly drain battery life, a

critical concern for mobile devices.

4. Storage Limitations: The large size of LLM models

poses challenges for devices with limited storage

capacity.

5. Thermal Management: Intensive computations can

lead to heat generation, potentially affecting device

performance and user comfort.

6. Model Update Mechanisms: Ensuring that on-

device models remain up-to-date without frequent

large downloads presents logistical challenges.

Overcoming these limitations is crucial for the

widespread adoption of on-device LLM inference,

driving research into model compression, efficient

architectures, and hardware acceleration techniques.

III. Techniques for On-Device LLM Inference

A. Model Compression

Model compression techniques are crucial for reducing

the size and computational requirements of LLMs,

making them more suitable for on-device deployment.

1. Pruning methods: Pruning involves removing

redundant or less important parameters from the

model without significantly impacting

performance. Techniques such as magnitude-

based pruning, where weights below a certain

threshold are removed, and structured pruning,

which eliminates entire neurons or channels, have

shown promising results in compressing LLMs.

Advanced pruning methods like lottery ticket

hypothesis-based approaches have demonstrated

that it's possible to find sparse subnetworks within

larger models that can achieve comparable

performance [3].

2. Knowledge distillation: Knowledge distillation

transfers the learned information from a large,

complex model (teacher) to a smaller, more

efficient model (student). This technique allows

for the creation of compact models that retain

much of the performance of their larger

counterparts. In the context of LLMs, knowledge

distillation has been particularly effective in

creating models that can run efficiently on mobile

devices while maintaining a high degree of

language understanding and generation

capabilities.

Neural Architecture Search (NAS)

NAS represents an automated approach to discovering

optimal model architectures that balance efficiency

and performance. In the context of LLM compression,

NAS can be used to:

1. Hardware-Aware Architecture Search

● Automatically discovers architectures optimized

for specific mobile/edge hardware

● Incorporates hardware constraints (memory,

compute, energy) into the search objectives

● Uses reinforcement learning or evolutionary

algorithms to explore the architecture space

2. Multi-Objective Optimization

● Simultaneously optimizes for model size,

inference speed, and accuracy

● Generates Pareto-optimal architectures for

different resource constraints

● Enables automated trade-off decisions based on

deployment requirements

3. Combined Search Spaces

● Integrates architecture search with other

compression techniques

● Jointly optimizes model structure, pruning ratios,

and quantization strategies

Volume 10, Issue 6, November-December-2024 | http://ijsrcseit.com

Athul Ramkumar Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol., November-December-2024, 10 (6) : 595-604

598

● Results in holistic compression solutions tailored

to target devices

B. Quantization

Quantization reduces the precision of model

parameters and activations, significantly decreasing

memory requirements and computational complexity.

1. Post-training quantization

This technique involves converting the model's

weights and activations from high-precision

floating-point representations (e.g., 32-bit) to

lower-precision formats (e.g., 8-bit integers) after

training. While this can lead to some loss in

accuracy, careful calibration and optimization can

minimize performance degradation while

achieving substantial memory savings.

2. Quantization-aware training

Quantization-aware training incorporates the

quantization process during the model training

phase. This approach allows the model to adapt to

the reduced precision, often resulting in better

performance compared to post-training

quantization. Recent advancements in this area

have enabled the creation of 4-bit and even 2-bit

quantized models that maintain impressive

accuracy levels.

Quantization Granularity Levels

1. Per-tensor Quantization

● Uses a single scale value for entire tensor

● Simpler implementation and lower overhead

● Generally results in lower accuracy

2. Per-channel Quantization

● Applies different scale factors along channel

dimension

● Better preserves accuracy for convolutional

networks

● Higher memory overhead for scale factors

3. Block Quantization

● Divides tensors into fixed-size blocks

● Each block has its own scale factor

● Balance between accuracy and overhead

Advanced Quantization Techniques

1. Weight-only Quantization

● Quantizes only model weights, keeping

activations in higher precision

● Reduces model size while maintaining

computational precision

● Particularly effective for transformer

architectures

2. Weight Clustering

● Groups similar weights into clusters

● Represents weights using cluster centroids

● Combines well with quantization for additional

compression

3. Smooth Quant

● Balances activation and weight scales (X/s and W*s)

● Reduces quantization error through scale

redistribution

● Maintains model accuracy at lower precisions

C. Efficient Model Architectures

1. Lightweight transformer variants

Researchers have developed various lightweight

alternatives to the standard transformer

architecture used in LLMs. These variants, such as

MobileBERT and DistilBERT, incorporate

architectural modifications like factorized

embedding layers, reduced self-attention heads,

and shallower networks. These changes

significantly reduce model size and computational

requirements while preserving much of the

language understanding capabilities of larger

models.

2. Sparse attention mechanisms

Traditional transformer models use dense

attention mechanisms, where each token attends

to all other tokens in the sequence. Sparse

attention mechanisms, such as Longformer and

Reformer, reduce computational complexity by

allowing each token to attend only to a subset of

other tokens. These approaches enable processing

of longer sequences and reduce memory

requirements, making them particularly suitable

for on-device inference [4].

3. Mixture of Experts (MoE)

Volume 10, Issue 6, November-December-2024 | http://ijsrcseit.com

Athul Ramkumar Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol., November-December-2024, 10 (6) : 595-604

599

MoE architectures distribute computation across

specialized neural networks (experts) that handle

different types of inputs[10]:

● Dynamic Routing: Uses a router network to

direct inputs to the most appropriate expert

● Sparse Activation: Only activates a small subset

of experts for each input, reducing

computational cost

● Conditional Computation: Enables efficient

scaling by allowing selective use of model

capacity

● Task Specialization: Different experts can

specialize in different types of tasks or language

patterns

● Resource Efficiency: Achieves better

performance per computation by activating

only relevant parts of the model

● Adaptive Scaling: Can easily scale up or down

by adding or removing experts without

retraining the entire model

Memory-Efficient Attention Mechanisms

1. KV Caching

● Caches key and value tensors from previous

steps

● Reduces redundant computations in

autoregressive inference

● Enables efficient token-by-token generation

2. Flash Attention

● Optimizes memory access patterns

● Reduces memory I/O through tiling strategies

● Achieves significant speedup on GPU

hardware

3. Paged Attention

● Implements block-based attention

computation

● Manages memory like virtual memory systems

● Enables processing of longer sequences with

limited memory

4. Sliding Window Attention

● Restricts attention to local windows

● Uses rotating buffer for KV cache

● Linear memory scaling with sequence length

5. Sparse Attention Patterns

● Combines random, window, and global

attention

● Reduces quadratic complexity of attention

● Maintains model quality with reduced

computation

6. Low-Rank Approximation

● Approximates attention matrices with low-

rank factorization

● Reduces memory and computational

requirements

● Maintains attention mechanism effectiveness

7. Group Query Attention

● Shares attention heads among queries

● Reduces memory requirements without

reducing compute

● Maintains model quality with fewer

parameters

8. Multi-Query Attention

● Uses a single key-value head with multiple

query heads

● Significantly reduces memory footprint

during inference

● Maintains model quality while decreasing

memory bandwidth requirements

● Particularly effective for autoregressive

decoding

Inference Optimization

1. Speculative Decoding

● Predicts multiple tokens in parallel

● Reduces end-to-end generation latency

● Particularly effective for long sequences

2. Tensor Parallelism

● Distributes attention computation across

multiple processors

● Enables efficient scaling on multi-core devices

● Reduces per-device memory requirements

Volume 10, Issue 6, November-December-2024 | http://ijsrcseit.com

Athul Ramkumar Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol., November-December-2024, 10 (6) : 595-604

600

Technique Description Advantages Disadvantages Typical

Performance

Impact

Pruning Removes redundant or

less important

parameters

Reduces model size

significantly

May affect model

accuracy if

overapplied

20-50% size

reduction; 1-3%

accuracy loss

Quantization Reduces precision of

model parameters and

activations

Decreases memory

requirements and

computational complexity

Can lead to

accuracy

degradation

50-75% size

reduction; 0.5-2%

accuracy loss

Knowledge

Distillation

Transfers knowledge

from large model to

smaller one

Creates compact models

with good performance

Requires careful

training process

40-60% size

reduction; 1-4%

accuracy loss

Sparse

Attention

Reduces number of

attention computations

in transformers

Enables processing of

longer sequences

May not capture

all relevant

dependencies

30-50% speed

improvement;

minimal accuracy

impact

Table 1: Comparison of On-Device LLM Inference Techniques [3,4]

IV. Hardware Accelerators for On-Device LLM

Inference

A. Neural Processing Units (NPUs)

Neural Processing Units are specialized hardware

designed to accelerate neural network computations.

NPUs are increasingly being integrated into mobile

System-on-Chips (SoCs) to enhance on-device AI

performance. These units are optimized for matrix

multiplications and other operations common in LLMs,

offering significant speed improvements and energy

efficiency compared to general-purpose CPUs. Modern

NPUs can achieve performance levels of several TOPS

(Tera Operations Per Second) while maintaining low

power consumption, making them ideal for on-device

LLM inference [5].

B. Field-Programmable Gate Arrays (FPGAs)

FPGAs offer a flexible hardware acceleration solution

for LLM inference. Their reconfigurable nature allows

for customized circuitry tailored to specific model

architectures, potentially offering better performance

and energy efficiency than general-purpose processors.

FPGAs can be particularly effective for sparse and

quantized models, as they can be optimized to handle

irregular computation patterns and reduced precision

operations efficiently.

C. Application-Specific Integrated Circuits (ASICs)

ASICs represent the pinnacle of hardware

specialization for AI acceleration. These custom-

designed chips are optimized for specific LLM

architectures or operations, offering unparalleled

performance and energy efficiency. While the

development of ASICs is costly and time-consuming,

they can provide orders of magnitude improvement in

inference speed and power efficiency compared to

general-purpose hardware. Examples include Google's

Tensor Processing Unit (TPU) and custom AI chips

Volume 10, Issue 6, November-December-2024 | http://ijsrcseit.com

Athul Ramkumar Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol., November-December-2024, 10 (6) : 595-604

601

developed by companies like Apple and Huawei for

their mobile devices.

Fig 1: Comparison of Model Compression Techniques for a LLM [3,4]

V. Memory Management Optimizations

A. Efficient memory allocation techniques

Efficient memory allocation is crucial for on-device

LLM inference due to the limited RAM available on

mobile and edge devices. Techniques such as memory

pooling, where pre-allocated memory blocks are

reused across different operations, can significantly

reduce memory fragmentation and allocation overhead.

Dynamic memory management algorithms that adapt

to the specific memory access patterns of LLMs can

further optimize resource utilization.

B. Cache optimization strategies

Optimizing cache usage is essential for improving the

performance of on-device LLM inference. Techniques

like cache blocking, where computations are

reorganized to maximize data reuse within the cache,

can significantly reduce memory access latency.

Additionally, software-managed caches and cache

prefetching strategies tailored to the access patterns of

LLM operations can further enhance performance by

reducing cache misses and memory stalls.

C. Memory-efficient inference algorithms

Developing memory-efficient inference algorithms is

crucial for deploying LLMs on resource-constrained

devices. Techniques such as gradient checkpointing,

where intermediate activations are recomputed instead

of stored during the forward pass, can dramatically

reduce memory requirements at the cost of increased

computation. Another approach is progressive layer

evaluation, where the model's layers are processed

sequentially, allowing for the reuse of memory across

layers [6]. This technique is particularly effective for

transformer-based models, which dominate the LLM

landscape.

Fig 2: Energy Efficiency of Different Hardware

Accelerators for LLM Inference [4]

Volume 10, Issue 6, November-December-2024 | http://ijsrcseit.com

Athul Ramkumar Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol., November-December-2024, 10 (6) : 595-604

602

VI. Performance Evaluation

A. Benchmarking methodology

Evaluating the performance of on-device LLM

inference requires comprehensive benchmarking

methodologies that consider various factors such as

inference speed, memory usage, energy consumption,

and accuracy. Standardized benchmarks like MLPerf

Inference provide a framework for comparing different

implementations across diverse hardware platforms [7].

These benchmarks typically involve a set of

representative tasks, such as question answering or text

classification, and measure metrics like latency,

throughput, and power efficiency.

B. Comparison of different techniques

Comparative analysis of various on-device LLM

inference techniques reveals their strengths and

weaknesses. For instance, quantization methods

generally offer significant memory savings with

minimal accuracy loss, while pruning can provide

more balanced trade-offs between model size and

performance. Hardware accelerators like NPUs and

FPGAs often demonstrate superior energy efficiency

compared to CPU-based inference. Systematic

comparisons help identify the most effective

combinations of techniques for specific deployment

scenarios.

C. Trade-offs between model size, speed, and accuracy

The implementation of on-device LLM inference

involves carefully balancing model size, inference

speed, and accuracy. Smaller models generally offer

faster inference and lower memory requirements but

may sacrifice some accuracy. Conversely, larger models

can provide higher accuracy but at the cost of increased

latency and resource usage. Quantitative analysis of

these trade-offs, often visualized through Pareto

frontiers, helps developers choose the optimal

configuration for their specific use case and hardware

constraints.

Accelerator Type Description Advantages Disadvantages Typical

Applications

Neural Processing

Units (NPUs)

Specialized

hardware for neural

network

computations

High performance,

energy-efficient

Limited

flexibility

Mobile phones,

tablets

Field-Programmable

Gate Arrays (FPGAs)

Reconfigurable

hardware

Flexible, can be

optimized for specific

models

Higher power

consumption

than ASICs

Edge servers,

high-end mobile

devices

Application-Specific

Integrated Circuits

(ASICs)

Custom-designed

chips for specific AI

tasks

Highest performance

and energy efficiency

High

development

cost, lack of

flexibility

High-end

smartphones,

specialized AI

devices

Table 2: Hardware Accelerators for On-Device LLM Inference [5,6]

Volume 10, Issue 6, November-December-2024 | http://ijsrcseit.com

Athul Ramkumar Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol., November-December-2024, 10 (6) : 595-604

603

VII. Applications and Use Cases

A. Real-time language translation

On-device LLM inference enables real-time language

translation without relying on cloud services. This

application is particularly valuable for travelers or in

areas with limited internet connectivity. Local

processing ensures low-latency translations and

maintains user privacy by keeping sensitive

conversations on the device.

B. On-device voice assistants

LLMs deployed on-device can power more intelligent

and responsive voice assistants. These assistants can

perform complex language understanding and

generation tasks locally, providing faster responses and

functioning reliably even without an internet

connection. On-device processing also addresses

privacy concerns associated with cloud-based voice

assistants.

C. Privacy-preserving text analysis

On-device LLMs enable sophisticated text analysis

while keeping sensitive data local. This is crucial for

applications in healthcare, finance, and legal domains

where data privacy is paramount. Local processing

allows for tasks such as sentiment analysis, content

categorization, and named entity recognition without

exposing confidential information to external servers.

D. Embedded AI for IoT devices

Integrating LLMs into Internet of Things (IoT) devices

expands their capabilities for natural language

interaction and intelligent decision-making. This

enables scenarios such as smart home devices with

advanced voice control, industrial equipment with

natural language interfaces for maintenance and

diagnostics, and autonomous vehicles with enhanced

communication abilities [8].

VIII. Challenges and Future Directions

A. Improving energy efficiency

Enhancing the energy efficiency of on-device LLM

inference remains a critical challenge. Future research

directions include developing more power-efficient

hardware accelerators, optimizing model architectures

for low-power operation, and exploring novel energy-

aware inference algorithms. Techniques like dynamic

voltage and frequency scaling (DVFS) tailored for LLM

workloads could further improve energy efficiency.

B. Enhancing model adaptability for diverse hardware

As the landscape of mobile and edge devices continues

to diversify, creating LLMs that can adapt to various

hardware configurations becomes increasingly

important. Future work may focus on developing

hardware-aware neural architecture search techniques,

automated model optimization frameworks, and

runtime adaptation mechanisms that allow models to

dynamically adjust their computation based on

available resources.

C. Addressing privacy and security concerns

While on-device inference inherently provides some

privacy benefits, ensuring the security of deployed

models and protecting against potential attacks

remains crucial. Future research may explore

techniques for secure model updates, protecting

intellectual property embedded in on-device models,

and developing privacy-preserving training and fine-

tuning methods for personalized models [9].

Additionally, addressing potential biases and ensuring

fairness in on-device LLMs will be essential for their

responsible deployment.

Conclusion

In conclusion, the advancement of on-device inference

for Large Language Models represents a significant leap

forward in bringing sophisticated AI capabilities to

mobile and edge devices. This paradigm shift addresses

critical challenges in privacy, latency, and connectivity

while opening up new possibilities for AI-powered

applications across various domains. Through a

combination of innovative techniques such as model

compression, quantization, and efficient architectures,

coupled with the development of specialized hardware

accelerators, the formidable computational demands of

LLMs are being reconciled with the resource

constraints of mobile devices. As the field progresses,

we can anticipate further improvements in energy

efficiency, model adaptability, and security measures,

paving the way for more pervasive and powerful AI at

the edge. The ongoing research and development in

this area not only pushes the boundaries of what's

Volume 10, Issue 6, November-December-2024 | http://ijsrcseit.com

Athul Ramkumar Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol., November-December-2024, 10 (6) : 595-604

604

possible in on-device AI but also promises to reshape

the landscape of mobile computing, IoT, and human-

machine interaction. As these technologies mature, we

stand on the cusp of a new era where sophisticated

language understanding and generation capabilities

become an integral, seamless, and privacy-preserving

part of our daily interactions with technology.

REFERENCES

[1]. N. P. Jouppi et al., "In-Datacenter Performance

Analysis of a Tensor Processing Unit," 2017

ACM/IEEE 44th Annual International

Symposium on Computer Architecture (ISCA),

Toronto, ON, Canada, 2017, pp. 1-12, doi:

10.1145/3079856.3080246. [Online]. Available:

https://ieeexplore.ieee.org/document/8192463

[2]. Y. Kang et al., "Neurosurgeon: Collaborative

Intelligence Between the Cloud and Mobile Edge,"

in IEEE Transactions on Computer-Aided Design

of Integrated Circuits and Systems, vol. 39, no. 11,

pp. 3655-3668, Nov. 2020, doi:

10.1109/TCAD.2020.3012185. [Online].

Available:

https://dl.acm.org/doi/10.1145/3037697.3037698

[3]. S. Han, H. Mao and W. J. Dally, "Deep

Compression: Compressing Deep Neural

Networks with Pruning, Trained Quantization

and Huffman Coding," 2016 International

Conference on Learning Representations (ICLR),

San Juan, Puerto Rico, 2016, pp. 1-14. [Online].

Available: https://arxiv.org/abs/1510.00149

[4]. N. Kitaev, Ł. Kaiser and A. Levskaya, "Reformer:

The Efficient Transformer," 2020 International

Conference on Learning Representations (ICLR),

Addis Ababa, Ethiopia, 2020, pp. 1-12. [Online].

Available: https://arxiv.org/abs/2001.04451

[5]. Yiran Chen, Yuan Xie, Linghao Song, Fan Chen,

Tianqi Tang, A Survey of Accelerator

Architectures for Deep Neural Networks,

Engineering, Volume 6, Issue 3, 2020, Pages 264-

274, ISSN 2095-8099,

https://doi.org/10.1016/j.eng.2020.01.007

[6]. A. Reuther et al., "Survey of Machine Learning

Accelerators," in IEEE High Performance Extreme

Computing Conference (HPEC), Waltham, MA,

USA, 2020, pp. 1-12, doi:

10.1109/HPEC43674.2020.9286149. [Online].

Available:

https://ieeexplore.ieee.org/document/9286149

[7]. V. J. Reddi et al., "MLPerf Inference Benchmark,"

2020 ACM/IEEE 47th Annual International

Symposium on Computer Architecture (ISCA),

Valencia, Spain, 2020, pp. 446-459, doi:

10.1109/ISCA45697.2020.00045. [Online].

Available: https://arxiv.org/abs/1911.02549

[8]. J. Lin et al., "MCUNet: Tiny Deep Learning on IoT

Devices," 2020 IEEE/CVF Conference on

Computer Vision and Pattern Recognition

(CVPR), Seattle, WA, USA, 2020, pp. 11711-

11720, doi: 10.1109/CVPR42600.2020.01173.

[Online]. Available:

https://arxiv.org/abs/2007.10319

[9]. Alajlan, N.N.; Ibrahim, D.M. TinyML: Enabling of

Inference Deep Learning Models on Ultra-Low-

Power IoT Edge Devices for AI Applications.

Micromachines 2022, 13, 851.

https://doi.org/10.3390/mi13060851. [Online].

Available: https://www.mdpi.com/2072-

666X/13/6/851

[10]. Sneha Kudugunta, Google Research, “Learning to

Route by Task for Efficient Inference”. [Online].

Available : https://research.google/blog/learning-

to-route-by-task-for-efficient-inference/

