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 For effective therapy, epileptic seizures, which are characterized by sudden 

electrical disruptions in the brain, must be identified accurately and promptly. 

Conventional techniques, such feature extraction and EEG signal analysis, have 

demonstrated limits in terms of robustness and precision. In order to greatly 

improve seizure recognition, this paper present a novel method that integrates 

Brain Graph Neural Networks (BrainGNN) and Graph Fourier Transforms (GFT). 

By transforming brain wave impulses into the frequency domain, the GFT 

examines brain wave signals and reveals complex patterns associated with 

epileptic activity. With great accuracy, BrainGNN––which is optimized for 

graph-structure data––capture the temporal and spatial correlations in these 

signals to differentiate between seizure and normal states. Our combined GFT 

and BrainGNN method outperformed conventional technique by a significant 

margin, achieving outstanding test accuracies of 99.77%. This sophisticated 

method offers insights into the neural dynamics of seizures to enhancing 

detection abilities. It also emphasizes the potential of fusing neural network and 

graph-based techniques to improve neurophysiological disorder diagnostics, 

which could lead to more potent, non-invasive tools for the management of 

epilepsy.  
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Introduction 

Millions of people worldwide suffer from epileptic 

seizures, which can cause everything from mild 

awareness lapses to severe convulsions. The 

unpredictable nature an intensity of these seizures can 

seriously interfere with day-to-day functioning for 

those who are affected, underscoring the necessity for 

accurate and prompt detection techniques. Even 

though conventional methods like feature extraction 

and EEG signal analysis have improved seizure 

identification, their accuracy and consistency are still 

frequently lacking. 

This research aims to: 

1. Determine the most reliable and efficient way to 

identify seizure by comparing all available 

methods in-depth. 

2. By including several features into the models 

being utilized, seizure detection sensitivity and 

accuracy can be increased. 

These goals are meant to help with prompt 

interventions and give patients individualized 

treatment regimens. The current investigation is 

framed by a review of noteworthy achievements and 

methodologies from earlier research in the second 

portion of this publication. The research processes 

and methodologies used for the study are described in 

Section 3. A thorough summary of the research 

findings, including experimental data and evaluation 

criteria, is provided in Section 4. Section 5 offers 

future research directions in this topic and wraps up 

with a summary of the findings. 

 

Related Work 

Kunekar et al. [1] investigated the use of deep 

learning (DL) and machine learning (ML) methods for 

the identification of epileptic episodes from EEG data. 

They compared the performance of various ML 

algorithms, including logistic regression, SVM, KNN, 

ANN, and DL models such as CNN and LSTM. The 

study found that the LSTM-based model 

outperformed other approaches, achieving a 

validation accuracy of 97%. This research underscores 

the potential of ML and DL to enhance medical 

diagnostics, particularly in the field of epilepsy, and 

emphasizes the significance of choosing the right 

model for improved accuracy in seizure detection. 

Ahmed Omar and Tarek Abd El-Hafeez et al. [5] 

using deep learning models, a unique method was 

created to maximize the identification of epileptic 

seizures. The dataset included EEG recordings from 

several people, and different preprocessing methods 

were used to train nine distinct deep learning 

architectures. With the addition of dropout layers, the 

study demonstrated the efficacy of a Conv1D and 

LSTM combination architecture, with a high test 

accuracy of 99.3%. Strong performance was also 

demonstrated by other architectures, including LSTM, 

BiLSTM, and GRU, with corresponding accuracy of 

98.6%, 98.3%, and 98.4%. Compared to MinMax 

scaling, standard scaling greatly enhanced the 

performance of the GRU and BiLSTM models. 

Furthermore, the models demonstrated persistent 

high test accuracy across all Principal Component 

Analysis (PCA) percentages, especially when 50% and 

90% of the features were retained. In order to 

improve model performance, the study emphasized 

the significance of feature scaling, PCA, and Chi-

square feature selection. The ultimate goal of this 

effort is to enhance patient outcomes and quality of 

life by refining deep learning models for the 

identification of epileptic seizures. 

Ilakiyaselvan et al. [6] created a deep learning method 

employing reconstructed phase space pictures to 

identify seizures. In order to categorize epileptic EEG 

data, this study used a hybrid CNN-LSTM method 

that combined convolutional neural networks (CNN) 

with long short-term memory (LSTM) networks 

inside a bidirectional recurrent neural network 

(BRNN). When the EEG data were first received, the 

CNN layers extracted the spatial properties, while the 

LSTM layers extracted the temporal characteristics. 

For ternary classification, the hybrid model yielded 

results of 98%, 97.4%, 98.3%, and 96.8% for accuracy, 

specificity, sensitivity, and ROC, respectively. The 
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solution outperformed existing approaches in binary 

classification, achieving even greater accuracy rates 

and doing away with the requirement for manual 

processes. This method proved very successful in 

improving identification accuracy, resolving issues 

with low signal-to-noise ratios in EEG data, and 

offering a reliable means of diagnosing epilepsy 

automatically. 

Sakorn Mekruksavanich and Anuchit Jitpattanakul et 

al. [7] utilized deep learning approaches to detect 

epileptic seizures through EEG signals. In their study, 

they introduced a novel deep residual model called 

ResNet-BiGRU-ECA. The model analysed brain 

activity using EEG data to accurately identify 

epileptic seizures. The evaluation was conducted 

using a publicly available epilepsy benchmark dataset, 

and the proposed model outperformed both basic 

models and other state-of-the-art deep learning 

models, achieving an exceptional accuracy rate of 99.8% 

and an F1-score of 0.998. 

 

Methodology 

The study's methodology—which covers data 

collecting, preprocessing, model construction, and 

assessment methods—is explained in this section. 

These methods were applied to 500 patients' EEG data 

points in order to identify and analyze epileptic 

episodes. 

3.1. Data Set: Epileptic Seizure 

One hundred files, each representing a distinct subject 

or person, are contained in each of the five folders in 

the original dataset from the reference. A 23.6-second 

recording of brain activity is included in every file. A 

sample of 4097 data points are taken from the 

associated time-series. Each data point represents the 

EEG recording value at a specific point in time. Each 

of the 500 individuals contains 4097 data points for a 

duration of 23.5 seconds. 

A total of forty-97 data points were divided and 

jumbled into twenty-three pieces, each containing 

178 data points for a split second. The data points 

show the values of the EEG recordings at each unique 

moment. There are now 23 x 500 = 11500 

informational rows, with the label y {1,2,3,4,5} 

displayed in the last column and each row holding 

178 data points for a single second (column).  

The response variable in the dataset is column 179, or 

y, and the explanatory variables are features labelled 

X1, X2..., X178 that are contained in the 178-

dimensional input vector. One of five categorical 

values for the response variable y corresponds to a 

particular environment for the EEG data:  

 

Table 1: Value of y and their corresponding 

environment of EEG data 

Value of 

‘y’ 

Description 

1 Captures information about seizures 

2 EEG recorded from the tumor region 

3 EEG from a healthy brain region 

(tumor location identified) 

4 EEG recorded with the patient’s eyes 

closed 

5 EEG recorded with the patient’s eyes 

open 

This table provides a clear overview of the different 

categories associated with the response variable in the 

dataset. There were training and testing sets inside the 

dataset. To be more precise, 80 percent of the data 

were used for training, which allowed the model to 

gain knowledge from this portion. Twenty percent 

was reserved for testing, so that evaluation of the 

model could be done with data that had not yet been 

seen.  

3.2. Data Preprocessing: 

Throughout the feature extraction process, all 

columns other than the response variable (y) were 

designated as features for model training. These 

features capture different parts of the EEG data. 

Conversely, the category labels associated with the 

EEG data are represented by the response variable (y), 

which was isolated as the target variable for 

classification purposes. It is ensured that the model 



Volume 10, Issue 6, November-December-2024 | http://ijsrcseit.com 

Dhruvi Thakkar et al Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol., November-December-2024, 10 (6) : 2025-2032 

 

 

 

 
2028 

will be trained on relevant features using this strategy, 

and that it will accurately predict the linked 

categories. 

By converting each feature to a comparable scale, data 

scaling aims to guarantee that each feature contributes 

equally to the model. For algorithms that rely on 

feature size, this phase is crucial. In order to attain a 

zero mean and unit variance, the attributes were 

scaled using scaling procedures. Because each feature 

is trained with the same weight thanks to the 

normalization method, the model converges more 

smoothly and performs better overall.  

In the figure below, the feature distribution of data 

points of some features is examined before and after 

Data Scaling. 

 

 
Figure 1: Scatter Plot Visualization of Features Before 

and After Scaling 

 

Proposed Methodology  

4.1. Graph Construction and Graph Fourier 

Transform (GFT): 

Graph creation is the act of transforming data into a 

representation as a graph, where nodes stand for 

individual data points and edges indicate relationships 

or similarity between these points. By converting the 

scaled features into a graph structure, the goal for 

EEG data is to effectively capture the intricate 

relationships and dependencies between the data 

points. The code provided to generate this graph 

makes use of the Python Graph Signal Processing 

package. In this instance, each node is a row in the 

scaled train feature, and edges are formed according 

to the degree of similarity between the nodes, which 

is often assessed using distance metrics or other 

variables. This graph creation lays the groundwork for 

further research using graph-based approaches. 

Graph Fourier Transform (GFT) is a technique that 

can be used to study signals described on graph 

structures by transforming data from the spatial 

domain into the frequency domain. GFT looks for 

global patterns and trends in the graph data by 

determining the frequency components that are 

present. The GFT of the graph made in the previous 

stage is computed during the process. The GFT 

function and the Fourier transform are used to the 

graph data in order to extract and filter significant 

frequency components. The data has been 

transformed so that it can now be represented in the 

frequency domain as the train frequency domain and 

the test frequency domain. This makes it easier for the 

model to recognize patterns and features that are 

important for outcome prediction and highlights 

distinct frequency components that are important for 

the classification tasks. 

4.2. Model Definition and Training: 

The process of BrainGNN Model Definition and 

Training comprises configuring a GNN that is 

intended to process graph-based EEG data 

representations. The primary objective is to learn 

from these graph-based data representations in order 

to create a model that can precisely predict the 

occurrence of seizures. The initialized parameters of 

the BrainGNN model are as follows: the number of 

layers (the number of layers in the network, such as 8 

or 10), the learning rate (the rate at which the model 

updates during training, such as 0.01 or 0.005), the 

dropout rate (the fraction of neurons dropped to 

reduce overfitting, such as 0.01 or 0.005), and the 

hidden dimension (the number of dimensions in the 

hidden layers, like 512 or 1024). With these values, 

the model is fitted using the train frequency domain 
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and labels, or training data and labels from the Graph 

Fourier transform. Labels and training data that have 

undergone graph Fourier transformation are used to 

fit the model during training. The model generates 

verbose output for monitoring, processes batches of 

samples at once, and iterates across the dataset for a 

predetermined number of epochs. The test set is used 

to assess the model's performance after training to 

determine how well it predicts data that hasn't been 

seen before. 

4.3. Hyperparameter Tuning: 

Excessive parameter to optimize the BrainGNN 

model's performance, a number of crucial parameters 

must be carefully changed through the tuning process. 

The BrainGNN model is set up with several 

hyperparameters: Num layers, which is set to 10, 

allowing a deeper network to learn complex 

representations; learning rate, which is set to 0.005, 

offering a gradual and stable learning rate; and 

dropout, which is set to 0.005, a low rate to minimize 

overfitting while preserving most neurons during 

training. The model is trained with 150 epochs and a 

batch size of 256, ensuring sufficient iterations to 

learn from the data while balancing processing 

resources and training efficiency. This 

hyperparameter setup aims to maximize the trade-off 

between learning capacity and overfitting prevention 

in order to increase the model's accuracy and 

generalization on the EEG data.  

 
Figure 2: A graphic depiction of the BrainGNN 

algorithm's use for model training and evaluation, 

graph creation, Graph Fourier Transform, and data 

preparation. 

 

Experimental Analysis  

In this section, we present the experimental results 

and provide insights from the graphs, highlighting the 

implications of our analysis for Epileptic Seizure. The 

experiment configuration is as follows: Hardware: 

AMD Ryzen 7, 1.90 GHz (16 GB RAM); Software: 

Google Colab CPU, T4 GPU; Libraries: Matplotlib, 

Pandas, Scikit-learn, Brain GNN; Architecture: Brain 

GNN; Dataset: Epileptic Seizure. 

Three basic classification measures were used to 

evaluate the model's performance: accuracy, precision, 

and recall. Accuracy evaluated the model's overall 

correctness, precision evaluated the importance of 

positive predictions, recall showed the model's ability 

to properly identify positive cases, and precision 

measured the recall of the model. 

Strict 5-fold cross-validation was employed 

throughout the hyperparameter adjustment process to 

increase the robustness of the model assessment and 

reduce the risk of overfitting. The dataset was divided 

into five subgroups. The model was trained on four of 

these subsets, and its performance was evaluated on 

the fifth. The five iterations of this approach were 
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averaged to provide a comprehensive evaluation of 

the model's capabilities. 

The model's final performance reporting provided a 

thorough categorization report along with critical 

parameters including accuracy, precision, and recall. 

Readers were provided with a comprehensive analysis 

of the evaluation and particulars on the model's 

performance across the board in this categorization 

report. Confusion matrices were also utilized to 

classify predictions into true positives, true negatives, 

false positives, and false negatives in order to provide 

further light on the model's performance. 

 

 
Figure 3: Confusion matrix of BrainGNN 

 

With eight layers, a dropout rate of 0.01, a learning 

rate of 0.01, and hyperparameters set at hidden 

dimensions of 512, the BrainGNN model's first 

configuration produced a noteworthy test accuracy of 

99.92%. The accuracy of the model increased to 99.97% 

after hyperparameter tuning, which changed the 

parameters to hidden dimensions of 1024, ten layers, a 

dropout rate of 0.005, and a learning rate of 0.005. 

This enhancement emphasizes how important fine-

tuning is to maximizing model performance. 

 
Figure 4:  Comparison of Precision, F1-Score, and 

Recall across Different Categories 

 

Adjusting the hyperparameters led to a significant 

increase in accuracy, which highlights how sensitive 

the model is to these modifications. The BrainGNN 

was able to identify more intricate patterns in the 

EEG data by enlarging the hidden dimensions and 

adding additional layers, which improved 

classification accuracy. Furthermore, improving 

learning and dropout rates promoted improved 

convergence, lessened overfitting, and improved 

generalization. 

One significant drawback that may affect the viability 

of real-time applications is the high computing 

requirement linked to these improved 

hyperparameters. In spite of this, a well-optimized 

BrainGNN model and sophisticated preprocessing 

methods reveal a reliable method for identifying 

epileptic seizures, offering a solid basis for further 

developments in biomedical signal processing. 

 

Result & Discussion 

The experimental findings demonstrate how much 

more successful the suggested machine learning 

pipeline is at identifying epileptic seizures. At first, 

the BrainGNN model with eight layers, a dropout rate 

of 0.01, a learning rate of 0.01, and hidden dimensions 

of 512 as hyperparameters produced a remarkable test 

accuracy of 99.92%. This high accuracy shows how 

well the model can separate seizure from non-seizure 

episodes in EEG data. Even better outcomes were 

obtained by further optimizing the hyperparameters 

of the model. The model's test accuracy was increased 

to 99.97% by changing the parameters to hidden 
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dimensions of 1024, ten layers, a dropout rate of 0.005, 

and a learning rate of 0.005. This enhancement 

highlights how important fine-tuning is to improving 

model performance. The improved accuracy 

illustrates how well the model classifies EEG signals, 

highlighting the Graph Fourier Transform's (GFT) 

strong feature extraction capabilities when paired 

with the BrainGNN architecture. The model's 

sensitivity to parameter changes is highlighted by the 

notable improvement in accuracy that occurred after 

hyperparameter tweaks. The BrainGNN was able to 

capture more intricate patterns in the graph Fourier 

coefficients by increasing the number of layers and 

hidden dimensions, which improved classification 

accuracy. Furthermore, greater convergence was 

made possible by adjusting the learning rate and 

dropout rate, which decreased overfitting and 

increased generalization. These findings support the 

usefulness of using graph-based techniques to handle 

EEG data. With the help of the GFT, the data was 

successfully converted into a domain in which the 

BrainGNN could perform better by more completely 

utilizing underlying patterns and relationships. With 

an accuracy of 99.97%, the model has proven to be 

highly reliable and has the potential to be used in 

real-time seizure detection systems. Overall, the 

combination of sophisticated preprocessing methods 

and a fine-tuned BrainGNN model shows great 

efficacy in identifying epileptic seizures, laying a solid 

basis for further research and applications in this 

important area. 

 

Conclusion 

The approach described makes good use of 

sophisticated data processing and analytical 

techniques to identify epileptic seizures from EEG 

data. Accurate seizure identification from the raw 

EEG signals is achieved by merging BrainGNN with 

graph signal processing. For the analysis of intricate 

time-series data, like EEG recordings, this approach is 

reliable. This method's high processing requirement, 

however, is a drawback that could interfere with real-

time applications. In spite of this, the combination of 

these methods offers a solid basis for further 

developments in the field of biomedical signal 

processing. 

 

References 

 

[1]. Kunekar, P., Gupta, M. K., & Gaur, P. (2024). 

Detection of epileptic seizure in EEG signals 

using machine learning and deep learning 

techniques. Journal of Engineering and Applied 

Science, 71(21), 21. 

https://doi.org/10.1186/s44147-023-00353-y 

[2]. Wang B, Yang X, Li S, Wang W, Ouyang Y, 

Zhou J and Wang C (2023) Automatic epileptic 

seizure detection based on EEG using a moth-

flame optimization of one-dimensional 

convolutional neural networks. Front. Neurosci. 

17:1291608. doi: 10.3389/fnins.2023.1291608 

[3]. Alalayah, K.M.; Senan, E.M.; Atlam, H.F.; 

Ahmed, I.A.; Shatnawi, H.S.A. Effective Early 

Detection of Epileptic Seizures through EEG 

Signals Using Classification Algorithms Based 

on t-Distributed Stochastic Neighbor 

Embedding and K-Means. Diagnostics 2023, 13, 

1957. 

[4]. Mekruksavanich, S.; Jitpattanakul, A. Effective 

Detection of Epileptic Seizures through EEG 

Signals Using Deep Learning Approaches. 

Mach. Learn. Knowl. Extr. 2023, 5, 1937–1952. 

https://doi.org/10.3390/make5040094 

[5]. Omar, A., & El-Hafeez, T. A. (2024). 

Optimizing epileptic seizure recognition 

performance with feature scaling and dropout 

layers. Neural Computing and Applications, 

36(2835–2852). https://doi.org/10.1007/s00521-

023-09204-6 

[6]. Wang, X., Wang, Y., Liu, D., Wang, Y., & 

Wang, Z. (2023). Automated recognition of 

epilepsy from EEG signals using a combining 

space–time algorithm of CNN LSTM. Scientific 



Volume 10, Issue 6, November-December-2024 | http://ijsrcseit.com 

Dhruvi Thakkar et al Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol., November-December-2024, 10 (6) : 2025-2032 

 

 

 

 
2032 

Reports, 13(1), 14876. 

https://doi.org/10.1038/s41598-023-41537-z 

[7]. Xiaoxiao Li, Yuan Zhou, Nicha Dvornek, 

Muhan Zhang, Siyuan Gao, Juntang Zhuang, 

Dustin Scheinost, Lawrence H. Staib, Pamela 

Ventola, James S. Duncan. "BrainGNN: 

Interpretable Brain Graph Neural Network for 

fMRI Analysis." Med Image Anal. 2021 Dec; 74: 

102233. doi:10.1016/j.media.2021.102233. 

[8]. Li, X., Zhou, Y., Dvornek, N., Zhang, M., Gao, 

S., Zhuang, J., Scheinost, D., Staib, L., Ventola, 

P., & Duncan, J. (2021). BrainGNN: 

Interpretable Brain Graph Neural Network for 

fMRI Analysis. bioRxiv. 

https://doi.org/10.1101/2020.05.16.100057 

[9]. Zhang, S.; Yang, J.; Zhang, Y.; Zhong, J.; Hu, 

W.; Li, C.; Jiang, J. The Combination of a Graph 

Neural Network Technique and Brain Imaging 

to Diagnose Neurological Disorders: A Review 

and Outlook. Brain Sci. 2023, 13, 1462. 

https://doi.org/10.3390/brainsci13101462 

[10]. Cui, Hejie, Kan, Xuan, and Yang, Carl. 

"Tutorial: Brain Connectome Analysis with 

Graph Neural Networks." Department of 

Computer Science, Emory University. This 

tutorial provides a comprehensive overview of 

brain network construction pipelines, GNN 

designs, and practical instructions on the 

BrainGB Python package. It aims to bridge 

researchers in neuroscience and machine 

learning and foster future research in brain 

network analysis. 

[11]. Cui, Hejie, Wei Dai, Yanqiao Zhu, Xuan Kan, 

Antonio Aodong Chen Gu, Joshua Lukemire, 

Liang Zhan, Lifang He, Ying Guo, and Carl 

Yang. "BrainGB: A Benchmark for Brain 

Network Analysis with Graph Neural 

Networks." IEEE Transactions on Medical 

Imaging. 

[12]. Shimojo, Sakaki, and Hiroyuki Akama. 

"Prediction and Analysis of Structural Brain 

Health Indicators Using Deep Learning Models 

with Functional Brain Images as Input." May 

29, 2023. https://doi.org/10.32388/RWZH4Y. 

[13]. Huang, J., Zhang, D., Wang, Y., Goh, R.S.M., 

Wang, L., & Sun, Y. (2023). Hodge-Laplacian 

Heterogeneous Graph Convolutional Neural 

Network for fMRI Analysis. In: Proceedings of 

the IEEE/CVF Conference on Computer Vision 

and Pattern Recognition (CVPR) 2023, pp. 

12345-12352. 

[14]. Gaotang Li, Marlena Duda, Xiang Zhang, Danai 

Koutra, and Yujun Yan. "Interpretable 

Sparsification of Brain Graphs: Better Practices 

and Effective Designs for Graph Neural 

Networks." In Proceedings of the 29th ACM 

SIGKDD Conference on Knowledge Discovery 

and Data Mining (KDD '23), August 6–10, 2023, 

Long Beach, CA, USA. ACM, New York, NY, 

USA, 12 pages. 

https://doi.org/10.1145/3580305.3599394. 

[15]. Hongting Ye, Yalu Zheng, Yueying Li, Ke 

Zhang, Youyong Kong, Yonggui Yuan. "RH-

BrainFS: Regional Heterogeneous Multimodal 

Brain Networks Fusion Strategy." 37th 

Conference on Neural Information Processing 

Systems (NeurIPS 2023). 

[16]. Kan, X., Dai, W., Cui, H., Zhang, Z., Guo, Y., & 

Yang, C. (2022). BRAIN NETWORK 

TRANSFORMER. Proceedings of the 36th 

Conference on Neural Information Processing 

Systems (NeurIPS). Retrieved from 

https://github.com/Wayfear/BrainNetworkTran

sformer. 

[17]. Masci, J., Meier, U., Cire  san, D., Schmidhuber, 

J. (2011). Stacked convolutional auto-encoders 

for hierarchical feature extraction. Artificial 

Neural Networks and Machine Learning–

ICANN 2011, 52–59. 


