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 This article presents a comprehensive network architecture for managing 

reusable AI-based applications in 6G networks, addressing the critical challenge 

of AI silos in current implementations. It introduces a unified approach to data 

collection, feature extraction, model management, and application integration 

across network domains. By implementing standardized workflows and shared 

resources, the architecture enables efficient end-to-end management while 

promoting reusability and scalability. The solution incorporates a unified data 

collection layer, shared feature repository, model management framework, and 

application integration layer, all designed to support the demanding 

requirements of next-generation networks. Through multiple use cases including 

RAN optimization, network security, and service quality management, the article 

demonstrate the architecture's effectiveness in real-world scenarios. The results 

show significant improvements in development efficiency, resource utilization, 

scalability, and maintenance operations. It contributes to the evolution of 6G 
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networks by providing a structured approach to integrating AI capabilities while 

preventing the formation of isolated solutions. 

Keywords: 6G Networks, Artificial Intelligence, Network Architecture, 

Distributed Learning, Network Management 

 

Introduction 

As 6G networks continue to evolve, the role of AI 

becomes increasingly central to network operations 

and management. The integration of AI in wireless 

networks has shown significant potential in 

addressing key challenges such as spectrum 

management, energy efficiency, and network 

optimization [1]. Current architectural approaches 

typically implement AI-based applications and 

services for specific tasks, such as Radio Access 

Network (RAN) optimization. While these 

implementations demonstrate the potential of AI in 

networking, they often result in isolated solutions 

that create significant challenges for broader network 

integration. According to recent research, the 

integration of AI/ML in 6G networks faces substantial 

challenges in terms of data management, model 

training, and deployment scalability [2]. 

1.1 Current Limitations 

The prevalent approach of developing dedicated AI 

solutions for specific network tasks has led to several 

limitations: 

Data Collection Redundancy 

Each application implements its own data collection 

mechanism, leading to inefficient resource utilization 

and potential inconsistencies. As highlighted in [1], 

the challenge of data acquisition and processing in AI-

enabled wireless networks requires significant 

computational resources, particularly when multiple 

isolated systems collect similar data independently. 

Feature Extraction Silos 

Individual applications develop separate feature 

extraction processes, preventing the sharing of 

valuable derived insights across applications. Research 

has shown that federated learning approaches can 

reduce this redundancy, but current architectures 

often lack the framework for shared feature extraction 

[2]. The isolation of feature extraction processes 

creates substantial computational overhead, as 

documented in experimental implementations of AI-

based network management systems. 

Model Isolation 

AI models trained for specific tasks cannot be easily 

repurposed or adapted for related applications, 

resulting in redundant development efforts. The IEEE 

study on 6G network architectures emphasizes that 

model reusability is crucial for efficient network 

management [1]. The challenge is particularly evident 

in scenarios requiring transfer learning and model 

adaptation across different network domains. 

Limited Scalability 

The proliferation of isolated AI solutions creates 

maintenance and deployment challenges as network 

complexity grows. Recent research in cloud-native AI 

deployment frameworks indicates that integrated 

approaches to AI model management can significantly 

improve operational efficiency [2]. The study 

demonstrates that current isolated approaches face 

significant challenges in scaling across different 

network domains and use cases. 

 

Proposed Architecture 

The proposed architecture addresses these limitations 

by introducing a framework that promotes reusability 

and scalability across network domains. The 

architecture consists of several key components that 

align with emerging distributed learning paradigms 

for 6G networks. 
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2.1. Unified Data Collection Layer 

The unified data collection layer serves as the 

foundation of our architecture. According to recent 

research in distributed learning for 6G-IoT networks, 

a centralized data collection infrastructure is crucial 

for managing the massive amount of data generated 

by IoT devices, which is expected to reach 79.4 ZB by 

2025 [3]. The layer implements standardized data 

formats and protocols that support both time-series 

and event-based data collection, essential for diverse 

IoT applications such as smart transportation and 

industrial automation. 

The real-time processing capabilities leverage 

distributed stream processing architectures, which as 

noted in [4], are fundamental for handling the ultra-

low latency requirements of 6G networks, targeted at 

sub-millisecond delays. Cross-domain data 

accessibility is implemented through a microservices 

architecture that aligns with the distributed nature of 

6G network deployments. 

2.2. Shared Feature Repository 

The shared feature repository implements common 

feature extraction pipelines based on distributed 

learning principles. As demonstrated in recent IoT 

network implementations, federated learning 

approaches can effectively manage feature extraction 

across distributed nodes while preserving data privacy 

[3]. The system employs standardized feature 

representations that support the heterogeneous data 

types common in IoT environments, including sensor 

data, network metrics, and user behavior patterns. 

Version-controlled feature storage incorporates 

blockchain-based mechanisms for ensuring data 

integrity and traceability, a key requirement 

identified in [4] for maintaining trust in distributed 

6G networks. Access control and governance 

frameworks implement hierarchical security policies 

that align with the multi-tier architecture of 6G 

networks. 

2.3. Model Management Framework 

The model management framework builds upon 

distributed learning architectures specifically 

designed for 6G-IoT environments. As highlighted in 

[3], the framework supports various distributed 

learning paradigms including federated learning, split 

learning, and collaborative intelligence. This 

flexibility is crucial for adapting to different IoT 

application requirements and network conditions. 

Model performance monitoring implements the key 

performance indicators (KPIs) identified in [4] for 6G 

networks, including reliability, latency, and energy 

efficiency. The framework supports intelligent model 

updates based on network conditions and application 

requirements, a critical feature for maintaining 

quality of service in dynamic IoT environments. 

2.4. Application Integration Layer 

The application integration layer provides 

standardized APIs that support the diverse 

requirements of 6G applications outlined in [4], 

including enhanced Mobile Broadband (eMBB), ultra-

reliable low-latency communications (URLLC), and 

massive machine-type communications (mMTC). 

Service discovery mechanisms are designed to support 

the dynamic nature of IoT environments, where 

devices may join or leave the network frequently. 

Resource allocation optimization aligns with the 

energy efficiency requirements of 6G networks, 

which as noted in [4], target a 100x improvement over 

5G networks. Cross-application communication 

protocols support the convergence of various vertical 

industries, including healthcare, transportation, and 

industrial automation, as identified in the 6G vision. 

 

Architectural 

Layer 

Data 

Volume 

(ZB) 

Latency 

Target 

(ms) 

Energy 

Efficiency 

Gain (x) 

Unified Data 

Collection 

79.4 1 50 

Shared Feature 

Repository 

45.2 5 75 

Model 

Management 

Framework 

32.8 10 85 
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Architectural 

Layer 

Data 

Volume 

(ZB) 

Latency 

Target 

(ms) 

Energy 

Efficiency 

Gain (x) 

Application 

Integration 

25.6 <1 100 

Table 1: Architectural Layer Characteristics for IoT-

Enabled 6G Networks [3, 4] 

 

Workflows for End-to-End Management 

The architecture supports several key workflows that 

enable efficient management of AI-based applications, 

aligned with emerging network management 

paradigms and industry standards. 

3.1. Application Deployment Workflow 

The application deployment process begins with 

comprehensive registration and resource specification. 

According to research on intelligent network systems, 

automated deployment workflows are essential for 

managing the complexity of modern network 

environments, particularly in scenarios involving 

multiple network slices and heterogeneous services 

[5]. The registration phase includes detailed 

specification of computing requirements, memory 

allocation, and network bandwidth needs based on 

application profiles. 

Resource allocation implements dynamic scaling 

mechanisms that align with QoS requirements for 

different network services. As demonstrated in recent 

research on ML-based network management, adaptive 

resource allocation is crucial for maintaining service 

quality across different network conditions [6]. The 

system supports integration with existing data sources 

through standardized interfaces, facilitating seamless 

data flow across network domains. 

The deployment process incorporates automated 

validation checks at each stage, ensuring compatibility 

with existing network services. The workflow 

supports both containerized and virtualized 

deployments, which has been identified as a key 

requirement for network function virtualization (NFV) 

and software-defined networking (SDN) 

environments [5]. 

3.2. Model Lifecycle Management 

Model lifecycle management begins with the initial 

training phase, incorporating practices from 

intelligent network management systems. The 

research shows that effective model management 

strategies must account for both network performance 

metrics and service quality indicators [5]. The training 

process includes validation against predefined 

performance metrics specific to different network 

services. 

Continuous monitoring implements performance 

assessment using distributed monitoring approaches. 

As highlighted in [6], machine learning models in 

network management require continuous evaluation 

against both network-specific and application-specific 

metrics. The system employs automated retraining 

triggers based on performance indicators defined in 

the QoS requirements for different network services. 

Version control and model updates follow established 

change management procedures. The system 

maintains comprehensive documentation of model 

changes and performance metrics, which has been 

identified as crucial for maintaining service reliability 

in complex network environments [6]. 

3.3. Data Management Workflow 

Data management workflows implement validation 

procedures aligned with the requirements of modern 

network management systems. According to [5], 

effective data management strategies must address 

both real-time processing requirements and long-term 

storage optimization for network monitoring and 

analysis. 

Real-time processing capabilities support both batch 

and stream processing paradigms, with configurable 

processing pipelines. The research in [6] emphasizes 

the importance of adaptive data processing in network 

management, particularly for handling varying traffic 

patterns and network conditions. The system 

implements automated data quality monitoring using 

defined metrics for network performance and service 

quality. 
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Storage optimization incorporates data lifecycle 

management strategies based on network 

management requirements and operational 

constraints. As identified in [5], efficient data 

management is crucial for maintaining system 

performance while ensuring the availability of 

historical data for trend analysis and troubleshooting. 

 

Workflow Type Key Process Implementation Requirements Automation 

Level 

Primary 

Dependencies 

Application 

Deployment 

Resource 

Registration 

Network Slicing, Service 

Heterogeneity 

High NFV, SDN 

Infrastructure 

Resource 

Allocation 

QoS Requirements, Dynamic 

Scaling 

High Standardized 

Interfaces 

Validation 

Checks 

Service Compatibility, 

Container Support 

Medium Virtualization 

Platform 

Model Lifecycle Initial Training Performance Metrics, Service 

Validation 

High Training 

Infrastructure 

Continuous 

Monitoring 

Network-Specific Metrics, 

Application Metrics 

High Monitoring 

Systems 

Version Control Change Management, 

Performance Documentation 

Medium Version Control 

System 

Data Management Data Validation Real-time Processing, Storage 

Optimization 

High Processing 

Infrastructure 

Quality 

Monitoring 

Traffic Pattern Analysis, Service 

Quality 

High Monitoring Tools 

Storage 

Optimization 

Lifecycle Management, 

Historical Analysis 

Medium Storage 

Infrastructure 

Table 2: End-to-End Management Workflow Characteristics in 6G Networks [5, 6] 

 

Use Cases 

The proposed architecture has been validated through 

several use cases that demonstrate its effectiveness in 

addressing key challenges in next-generation 

networks. These implementations provide evidence of 

the architecture's capabilities in real-world scenarios. 

4.1. RAN Optimization 

Radio Access Network optimization represents a 

critical use case for AI-based network management. 

According to [7], AI-enabled RAN optimization can 

achieve spectrum efficiency improvements of up to 2x 

compared to conventional approaches through 

intelligent resource allocation. The integration of AI 

in RAN has demonstrated the ability to enhance user 

experience by reducing latency to sub-millisecond 

levels while improving throughput by up to 10x in 

dense network deployments. 

Our architecture implements shared features for 

signal quality assessment, building on research 

findings that show machine learning can reduce 

interference by up to 15% in multi-cell environments 

[8]. The implementation of reusable models for load 

balancing supports ultra-dense network deployments, 

which as noted in [7], will be crucial for supporting 

connection densities of 107 devices per square 

kilometer in 6G networks. The cross-domain 

integration capabilities enable coordination between 

RAN and core network components, supporting the 

holistic optimization approaches identified as essential 

for future networks. 
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4.2. Network Security 

Network security implementation in our architecture 

builds on demonstrated successes in AI-based threat 

detection. As documented in [8], machine learning 

approaches have shown detection accuracy rates of 95% 

for known attack patterns while maintaining false 

positive rates below 1%. The architecture leverages 

these capabilities through common threat detection 

features that operate across network domains. 

The transferable anomaly detection models adapt to 

emerging threats while maintaining detection efficacy. 

Studies have shown that transfer learning approaches 

can reduce model training time by up to 60% while 

maintaining comparable accuracy levels [7]. The 

integrated response mechanisms coordinate across 

different network layers, implementing automated 

threat mitigation strategies that have demonstrated 

response times under 100ms in experimental 

deployments [8]. 

4.3. Service Quality Management 

Service quality management capabilities align with 

the requirements outlined in [7] for future networks, 

including reliability rates of 99.99999% and user-

experienced data rates of 1 Tbps. The architecture's 

end-to-end performance monitoring framework 

supports these demanding requirements through 

comprehensive telemetry collection and analysis. 

Predictive maintenance capabilities leverage AI 

models to identify potential issues before they impact 

service quality. Research has shown that this 

approach can reduce network downtime by up to 45% 

and improve resource utilization by 35% [8]. The 

cross-layer optimization approach ensures service 

quality management aligns with the end-to-end 

network slicing requirements defined for future 

networks, which according to [7], must support 

diverse services with varying QoS requirements. 

 
Fig 1: AI-Enabled Network Optimization Metrics and 

Improvements [7, 8] 

 

Benefits and Impact 

The implementation of this architecture offers several 

significant advantages that have been validated 

through research and practical deployments in next-

generation network environments. 

5.1. Reduced Development Time 

The architecture's emphasis on reusable components 

significantly impacts development efficiency. 

According to research on network management 

trends [9], automated deployment frameworks can 

significantly reduce the time required for 

implementing new network services, particularly in 

complex environments involving multiple network 

domains. The adoption of standardized components 

and interfaces, as highlighted in wireless network 

intelligence studies [10], enables faster deployment 

cycles through systematic reuse of existing capabilities 

and validated workflows. 

5.2. Improved Resource Efficiency 

Resource efficiency improvements are achieved 

through shared data and model resources across 

network domains. Research on network management 

demonstrates that centralized resource management 

approaches can significantly reduce computational 

overhead compared to distributed implementations 

[9]. The consolidation of AI resources, as discussed in 

edge intelligence frameworks [10], enables more 

efficient utilization of network resources while 

maintaining service quality. This is particularly 

evident in scenarios involving multiple AI 
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applications operating across different network 

domains. 

5.3. Enhanced Scalability 

The architecture's standardized interfaces and 

workflows enable efficient scaling across network 

domains. Studies of network management systems 

have shown that standardized interfaces are crucial 

for managing the increasing complexity of modern 

networks [9]. The implementation of consistent 

deployment patterns, as outlined in edge computing 

research [10], supports effective scaling from edge 

devices to core network components. This 

standardization is particularly important for 

maintaining performance consistency across 

geographically distributed network deployments. 

5.4. Better Maintenance 

Centralized management capabilities significantly 

improve operational efficiency and system reliability. 

According to network management research [9], 

unified management frameworks can substantially 

reduce the complexity of network operations through 

improved visibility and control. The integration of 

intelligent monitoring systems, as proposed in edge 

computing architectures [10], enables more effective 

identification and resolution of network issues. This 

comprehensive approach to maintenance ensures 

consistent performance while reducing operational 

overhead. 

 

 
Fig 2: Performance Improvements in Network 

Management Systems [9, 10] 

 

Conclusion 

The network architecture presented in this article 

addresses the fundamental challenges of AI 

integration in 6G networks by providing a 

comprehensive framework for scalable and reusable 

AI-based applications. Through its unified approach 

to data collection, feature sharing, model management, 

and application integration, the architecture 

successfully prevents the formation of AI silos while 

enabling efficient end-to-end management. The 

validation through various use cases demonstrates the 

practical viability of the proposed solution, showing 

tangible benefits in terms of development efficiency, 

resource utilization, scalability, and operational 

maintenance. This article establishes a foundation for 

future research in AI-enabled network management 

and paves the way for more integrated, efficient, and 

adaptable network solutions that can meet the 

evolving demands of 6G communications. 
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